Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 6 additions & 11 deletions test/Turing/Turing.jl
Original file line number Diff line number Diff line change
Expand Up @@ -11,12 +11,11 @@ module Turing
using Requires, Reexport, ForwardDiff
using DistributionsAD, Bijectors, StatsFuns, SpecialFunctions
using Statistics, LinearAlgebra
using Markdown, Libtask, MacroTools
@reexport using Distributions, MCMCChains, Libtask
using Libtask
@reexport using Distributions, MCMCChains, Libtask, AbstractMCMC
using Tracker: Tracker

import Base: ~, ==, convert, hash, promote_rule, rand, getindex, setindex!
import DynamicPPL: getspace
import DynamicPPL: getspace, NoDist, NamedDist

const PROGRESS = Ref(true)
function turnprogress(switch::Bool)
Expand Down Expand Up @@ -68,6 +67,8 @@ export @model, # modelling
@varname,
DynamicPPL,

Prior, # Sampling from the prior

MH, # classic sampling
RWMH,
ESS,
Expand All @@ -90,7 +91,6 @@ export @model, # modelling
ADVI,

sample, # inference
psample,
setchunksize,
resume,
@logprob_str,
Expand All @@ -105,15 +105,10 @@ export @model, # modelling
Flat,
FlatPos,
BinomialLogit,
VecBinomialLogit,
BernoulliLogit,
OrderedLogistic,
LogPoisson,
NamedDist,
filldist,
arraydist

# Reexports
using AbstractMCMC: sample, psample
export sample, psample

end
28 changes: 18 additions & 10 deletions test/Turing/contrib/inference/dynamichmc.jl
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@ mutable struct DynamicNUTSState{V<:VarInfo, D} <: AbstractSamplerState
draws::Vector{D}
end

getspace(::DynamicNUTS{<:Any, space}) where {space} = space
DynamicPPL.getspace(::DynamicNUTS{<:Any, space}) where {space} = space

function AbstractMCMC.sample_init!(
rng::AbstractRNG,
Expand All @@ -60,16 +60,23 @@ function AbstractMCMC.sample_init!(
gradient_logp(x, spl.state.vi, model, spl)
end

# Set the parameters to a starting value.
initialize_parameters!(spl; kwargs...)

model(spl.state.vi, SampleFromUniform())
link!(spl.state.vi, spl)
l, dl = _lp(spl.state.vi[spl])
while !isfinite(l) || !isfinite(dl)
model(spl.state.vi, SampleFromUniform())
link!(spl.state.vi, spl)
l, dl = _lp(spl.state.vi[spl])
end

if spl.selector.tag == :default
if spl.selector.tag == :default && !islinked(spl.state.vi, spl)
link!(spl.state.vi, spl)
model(spl.state.vi, spl)
end

# Set the parameters to a starting value.
initialize_parameters!(spl; kwargs...)

results = mcmc_with_warmup(
rng,
FunctionLogDensity(
Expand Down Expand Up @@ -114,7 +121,7 @@ end
model::AbstractModel,
alg::DynamicNUTS,
N::Integer;
chain_type=Chains,
chain_type=MCMCChains.Chains,
resume_from=nothing,
progress=PROGRESS[],
kwargs...
Expand All @@ -130,19 +137,20 @@ end
end
end

function AbstractMCMC.psample(
function AbstractMCMC.sample(
rng::AbstractRNG,
model::AbstractModel,
alg::DynamicNUTS,
parallel::AbstractMCMC.AbstractMCMCParallel,
N::Integer,
n_chains::Integer;
chain_type=Chains,
chain_type=MCMCChains.Chains,
progress=PROGRESS[],
kwargs...
)
if progress
@warn "[$(alg_str(alg))] Progress logging in Turing is disabled since DynamicHMC provides its own progress meter"
end
return AbstractMCMC.psample(rng, model, Sampler(alg, model), N, n_chains;
chain_type=chain_type, progress=false, kwargs...)
return AbstractMCMC.sample(rng, model, Sampler(alg, model), parallel, N, n_chains;
chain_type=chain_type, progress=false, kwargs...)
end
2 changes: 1 addition & 1 deletion test/Turing/contrib/inference/sghmc.jl
Original file line number Diff line number Diff line change
Expand Up @@ -172,7 +172,7 @@ function step(
spl.selector.tag != :default && link!(vi, spl)

mssa = AHMC.Adaptation.ManualSSAdaptor(AHMC.Adaptation.MSSState(spl.alg.ϵ))
spl.info[:adaptor] = AHMC.NaiveHMCAdaptor(AHMC.UnitPreconditioner(), mssa)
spl.info[:adaptor] = AHMC.NaiveHMCAdaptor(AHMC.UnitMassMatrix(), mssa)

spl.selector.tag != :default && invlink!(vi, spl)
return vi, true
Expand Down
22 changes: 13 additions & 9 deletions test/Turing/core/Core.jl
Original file line number Diff line number Diff line change
@@ -1,13 +1,12 @@
module Core

using DistributionsAD, Bijectors
using MacroTools, Libtask, ForwardDiff, Random
using Libtask, ForwardDiff, Random
using Distributions, LinearAlgebra
using ..Utilities, Reexport
using Tracker: Tracker
using ..Turing: Turing
using DynamicPPL: Model,
AbstractSampler, Sampler, SampleFromPrior
using DynamicPPL: Model, AbstractSampler, Sampler, SampleFromPrior
using LinearAlgebra: copytri!
using Bijectors: PDMatDistribution
import Bijectors: link, invlink
Expand All @@ -17,9 +16,15 @@ using Requires

include("container.jl")
include("ad.jl")
@init @require Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f" begin
include("compat/zygote.jl")
export ZygoteAD
function __init__()
@require Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f" begin
include("compat/zygote.jl")
export ZygoteAD
end
@require ReverseDiff = "37e2e3b7-166d-5795-8a7a-e32c996b4267" begin
include("compat/reversediff.jl")
export ReverseDiffAD, getrdcache, setrdcache, emptyrdcache
end
end

export @model,
Expand All @@ -36,10 +41,9 @@ export @model,
forkr,
current_trace,
getweights,
getweight,
effectiveSampleSize,
increase_logweight,
inrease_logevidence,
resample!,
sweep!,
ResampleWithESSThreshold,
ADBackend,
setadbackend,
Expand Down
19 changes: 14 additions & 5 deletions test/Turing/core/ad.jl
Original file line number Diff line number Diff line change
@@ -1,14 +1,23 @@
##############################
# Global variables/constants #
##############################
const ADBACKEND = Ref(:forward_diff)
const ADBACKEND = Ref(:forwarddiff)
setadbackend(backend_sym::Symbol) = setadbackend(Val(backend_sym))
function setadbackend(::Val{:forward_diff})
Base.depwarn("`Turing.setadbackend(:forward_diff)` is deprecated. Please use `Turing.setadbackend(:forwarddiff)` to use `ForwardDiff`.", :setadbackend)
setadbackend(Val(:forwarddiff))
end
function setadbackend(::Val{:forwarddiff})
CHUNKSIZE[] == 0 && setchunksize(40)
ADBACKEND[] = :forward_diff
ADBACKEND[] = :forwarddiff
end

function setadbackend(::Val{:reverse_diff})
ADBACKEND[] = :reverse_diff
Base.depwarn("`Turing.setadbackend(:reverse_diff)` is deprecated. Please use `Turing.setadbackend(:tracker)` to use `Tracker` or `Turing.setadbackend(:reversediff)` to use `ReverseDiff`. To use `ReverseDiff`, please make sure it is loaded separately with `using ReverseDiff`.", :setadbackend)
setadbackend(Val(:tracker))
end
function setadbackend(::Val{:tracker})
ADBACKEND[] = :tracker
end

const ADSAFE = Ref(false)
Expand Down Expand Up @@ -37,8 +46,8 @@ struct TrackerAD <: ADBackend end
ADBackend() = ADBackend(ADBACKEND[])
ADBackend(T::Symbol) = ADBackend(Val(T))

ADBackend(::Val{:forward_diff}) = ForwardDiffAD{CHUNKSIZE[]}
ADBackend(::Val{:reverse_diff}) = TrackerAD
ADBackend(::Val{:forwarddiff}) = ForwardDiffAD{CHUNKSIZE[]}
ADBackend(::Val{:tracker}) = TrackerAD
ADBackend(::Val) = error("The requested AD backend is not available. Make sure to load all required packages.")

"""
Expand Down
93 changes: 93 additions & 0 deletions test/Turing/core/compat/reversediff.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,93 @@
using .ReverseDiff: compile, GradientTape
using .ReverseDiff.DiffResults: GradientResult

struct ReverseDiffAD{cache} <: ADBackend end
const RDCache = Ref(false)
setrdcache(b::Bool) = setrdcache(Val(b))
setrdcache(::Val{false}) = RDCache[] = false
setrdcache(::Val) = throw("Memoization.jl is not loaded. Please load it before setting the cache to true.")
function emptyrdcache end

getrdcache() = RDCache[]
ADBackend(::Val{:reversediff}) = ReverseDiffAD{getrdcache()}
function setadbackend(::Val{:reversediff})
ADBACKEND[] = :reversediff
end

function gradient_logp(
backend::ReverseDiffAD{false},
θ::AbstractVector{<:Real},
vi::VarInfo,
model::Model,
sampler::AbstractSampler = SampleFromPrior(),
)
T = typeof(getlogp(vi))

# Specify objective function.
function f(θ)
new_vi = VarInfo(vi, sampler, θ)
model(new_vi, sampler)
return getlogp(new_vi)
end
tp, result = taperesult(f, θ)
ReverseDiff.gradient!(result, tp, θ)
l = DiffResults.value(result)
∂l∂θ::typeof(θ) = DiffResults.gradient(result)

return l, ∂l∂θ
end

tape(f, x) = GradientTape(f, x)
function taperesult(f, x)
return tape(f, x), GradientResult(x)
end

@require Memoization = "6fafb56a-5788-4b4e-91ca-c0cea6611c73" @eval begin
setrdcache(::Val{true}) = RDCache[] = true
function emptyrdcache()
for k in keys(Memoization.caches)
if k[1] === typeof(memoized_taperesult)
pop!(Memoization.caches, k)
end
end
end
function gradient_logp(
backend::ReverseDiffAD{true},
θ::AbstractVector{<:Real},
vi::VarInfo,
model::Model,
sampler::AbstractSampler = SampleFromPrior(),
)
T = typeof(getlogp(vi))

# Specify objective function.
function f(θ)
new_vi = VarInfo(vi, sampler, θ)
model(new_vi, sampler)
return getlogp(new_vi)
end
ctp, result = memoized_taperesult(f, θ)
ReverseDiff.gradient!(result, ctp, θ)
l = DiffResults.value(result)
∂l∂θ = DiffResults.gradient(result)

return l, ∂l∂θ
end

# This makes sure we generate a single tape per Turing model and sampler
struct RDTapeKey{F, Tx}
f::F
x::Tx
end
function Memoization._get!(f::Union{Function, Type}, d::IdDict, keys::Tuple{Tuple{RDTapeKey}, Any})
key = keys[1][1]
return Memoization._get!(f, d, (typeof(key.f), typeof(key.x), size(key.x)))
end
memoized_taperesult(f, x) = memoized_taperesult(RDTapeKey(f, x))
Memoization.@memoize function memoized_taperesult(k::RDTapeKey)
return compiledtape(k.f, k.x), GradientResult(k.x)
end
memoized_tape(f, x) = memoized_tape(RDTapeKey(f, x))
Memoization.@memoize memoized_tape(k::RDTapeKey) = compiledtape(k.f, k.x)
compiledtape(f, x) = compile(GradientTape(f, x))
end
Loading