-
Notifications
You must be signed in to change notification settings - Fork 1.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #2192 from kieranfraser/dev_detection_transformer
Detection Transformer Estimator
- Loading branch information
Showing
8 changed files
with
2,061 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Large diffs are not rendered by default.
Oops, something went wrong.
513 changes: 513 additions & 0 deletions
513
art/estimators/object_detection/pytorch_detection_transformer.py
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
740 changes: 740 additions & 0 deletions
740
notebooks/adversarial_patch/attack_adversarial_patch_detr.ipynb
Large diffs are not rendered by default.
Oops, something went wrong.
309 changes: 309 additions & 0 deletions
309
tests/estimators/object_detection/test_pytorch_detection_transformer.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,309 @@ | ||
# MIT License | ||
# | ||
# Copyright (C) The Adversarial Robustness Toolbox (ART) Authors 2023 | ||
# | ||
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated | ||
# documentation files (the "Software"), to deal in the Software without restriction, including without limitation the | ||
# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit | ||
# persons to whom the Software is furnished to do so, subject to the following conditions: | ||
# | ||
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the | ||
# Software. | ||
# | ||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE | ||
# WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, | ||
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
# SOFTWARE. | ||
from __future__ import absolute_import, division, print_function, unicode_literals | ||
|
||
import logging | ||
|
||
import numpy as np | ||
import pytest | ||
|
||
logger = logging.getLogger(__name__) | ||
|
||
|
||
@pytest.fixture() | ||
@pytest.mark.skip_framework("tensorflow", "tensorflow2v1", "keras", "kerastf", "mxnet", "non_dl_frameworks") | ||
def get_pytorch_detr(): | ||
from art.utils import load_dataset | ||
from art.estimators.object_detection.pytorch_detection_transformer import PyTorchDetectionTransformer | ||
|
||
MEAN = [0.485, 0.456, 0.406] | ||
STD = [0.229, 0.224, 0.225] | ||
INPUT_SHAPE = (3, 32, 32) | ||
|
||
object_detector = PyTorchDetectionTransformer( | ||
input_shape=INPUT_SHAPE, clip_values=(0, 1), preprocessing=(MEAN, STD) | ||
) | ||
|
||
n_test = 2 | ||
(_, _), (x_test, y_test), _, _ = load_dataset("cifar10") | ||
x_test = x_test.transpose(0, 3, 1, 2).astype(np.float32) | ||
x_test = x_test[:n_test] | ||
|
||
# Create labels | ||
|
||
result = object_detector.predict(x=x_test) | ||
|
||
y_test = [ | ||
{ | ||
"boxes": result[0]["boxes"], | ||
"labels": result[0]["labels"], | ||
"scores": np.ones_like(result[0]["labels"]), | ||
}, | ||
{ | ||
"boxes": result[1]["boxes"], | ||
"labels": result[1]["labels"], | ||
"scores": np.ones_like(result[1]["labels"]), | ||
}, | ||
] | ||
|
||
yield object_detector, x_test, y_test | ||
|
||
|
||
@pytest.mark.only_with_platform("pytorch") | ||
def test_predict(get_pytorch_detr): | ||
|
||
object_detector, x_test, _ = get_pytorch_detr | ||
|
||
result = object_detector.predict(x=x_test) | ||
|
||
assert list(result[0].keys()) == ["boxes", "labels", "scores"] | ||
|
||
assert result[0]["boxes"].shape == (100, 4) | ||
expected_detection_boxes = np.asarray([-5.9490204e-03, 1.1947733e01, 3.1993944e01, 3.1925127e01]) | ||
np.testing.assert_array_almost_equal(result[0]["boxes"][2, :], expected_detection_boxes, decimal=1) | ||
|
||
assert result[0]["scores"].shape == (100,) | ||
expected_detection_scores = np.asarray( | ||
[ | ||
0.00679839, | ||
0.0250559, | ||
0.07205943, | ||
0.01115368, | ||
0.03321039, | ||
0.10407761, | ||
0.00113309, | ||
0.01442852, | ||
0.00527624, | ||
0.01240906, | ||
] | ||
) | ||
np.testing.assert_array_almost_equal(result[0]["scores"][:10], expected_detection_scores, decimal=1) | ||
|
||
assert result[0]["labels"].shape == (100,) | ||
expected_detection_classes = np.asarray([17, 17, 33, 17, 17, 17, 74, 17, 17, 17]) | ||
np.testing.assert_array_almost_equal(result[0]["labels"][:10], expected_detection_classes, decimal=5) | ||
|
||
|
||
@pytest.mark.only_with_platform("pytorch") | ||
def test_loss_gradient(get_pytorch_detr): | ||
|
||
object_detector, x_test, y_test = get_pytorch_detr | ||
|
||
grads = object_detector.loss_gradient(x=x_test, y=y_test) | ||
|
||
assert grads.shape == (2, 3, 800, 800) | ||
|
||
expected_gradients1 = np.asarray( | ||
[ | ||
-0.00061366, | ||
0.00322502, | ||
-0.00039866, | ||
-0.00807413, | ||
-0.00476555, | ||
0.00181204, | ||
0.01007765, | ||
0.00415828, | ||
-0.00073114, | ||
0.00018387, | ||
-0.00146992, | ||
-0.00119636, | ||
-0.00098966, | ||
-0.00295517, | ||
-0.0024271, | ||
-0.00131314, | ||
-0.00149217, | ||
-0.00104926, | ||
-0.00154239, | ||
-0.00110989, | ||
0.00092887, | ||
0.00049146, | ||
-0.00292508, | ||
-0.00124526, | ||
0.00140347, | ||
0.00019833, | ||
0.00191074, | ||
-0.00117537, | ||
-0.00080604, | ||
0.00057427, | ||
-0.00061728, | ||
-0.00206535, | ||
] | ||
) | ||
|
||
np.testing.assert_array_almost_equal(grads[0, 0, 10, :32], expected_gradients1, decimal=2) | ||
|
||
expected_gradients2 = np.asarray( | ||
[ | ||
-1.1787530e-03, | ||
-2.8500680e-03, | ||
5.0884970e-03, | ||
6.4504531e-04, | ||
-6.8841036e-05, | ||
2.8184296e-03, | ||
3.0257765e-03, | ||
2.8565727e-04, | ||
-1.0701057e-04, | ||
1.2945699e-03, | ||
7.3593057e-04, | ||
1.0177144e-03, | ||
-2.4692707e-03, | ||
-1.3801848e-03, | ||
6.3182280e-04, | ||
-4.2305476e-04, | ||
4.4307750e-04, | ||
8.5821096e-04, | ||
-7.1204413e-04, | ||
-3.1404425e-03, | ||
-1.5964351e-03, | ||
-1.9222996e-03, | ||
-5.3157361e-04, | ||
-9.9202688e-04, | ||
-1.5815455e-03, | ||
2.0060266e-04, | ||
-2.0584739e-03, | ||
6.6960667e-04, | ||
9.7393827e-04, | ||
-1.6040013e-03, | ||
-6.9741381e-04, | ||
1.4657658e-04, | ||
] | ||
) | ||
np.testing.assert_array_almost_equal(grads[1, 0, 10, :32], expected_gradients2, decimal=2) | ||
|
||
|
||
@pytest.mark.only_with_platform("pytorch") | ||
def test_errors(): | ||
|
||
from torch import hub | ||
|
||
from art.estimators.object_detection.pytorch_detection_transformer import PyTorchDetectionTransformer | ||
|
||
model = hub.load("facebookresearch/detr", "detr_resnet50", pretrained=True) | ||
|
||
with pytest.raises(ValueError): | ||
PyTorchDetectionTransformer( | ||
model=model, | ||
clip_values=(1, 2), | ||
attack_losses=("loss_ce", "loss_bbox", "loss_giou"), | ||
) | ||
|
||
with pytest.raises(ValueError): | ||
PyTorchDetectionTransformer( | ||
model=model, | ||
clip_values=(-1, 1), | ||
attack_losses=("loss_ce", "loss_bbox", "loss_giou"), | ||
) | ||
|
||
from art.defences.postprocessor.rounded import Rounded | ||
|
||
post_def = Rounded() | ||
with pytest.raises(ValueError): | ||
PyTorchDetectionTransformer( | ||
model=model, | ||
clip_values=(0, 1), | ||
attack_losses=("loss_ce", "loss_bbox", "loss_giou"), | ||
postprocessing_defences=post_def, | ||
) | ||
|
||
|
||
@pytest.mark.only_with_platform("pytorch") | ||
def test_preprocessing_defences(get_pytorch_detr): | ||
|
||
object_detector, x_test, _ = get_pytorch_detr | ||
|
||
from art.defences.preprocessor.spatial_smoothing_pytorch import SpatialSmoothingPyTorch | ||
|
||
pre_def = SpatialSmoothingPyTorch() | ||
|
||
object_detector.set_params(preprocessing_defences=pre_def) | ||
|
||
# Create labels | ||
result = object_detector.predict(x=x_test) | ||
|
||
y = [ | ||
{ | ||
"boxes": result[0]["boxes"], | ||
"labels": result[0]["labels"], | ||
"scores": np.ones_like(result[0]["labels"]), | ||
}, | ||
{ | ||
"boxes": result[1]["boxes"], | ||
"labels": result[1]["labels"], | ||
"scores": np.ones_like(result[1]["labels"]), | ||
}, | ||
] | ||
|
||
# Compute gradients | ||
grads = object_detector.loss_gradient(x=x_test, y=y) | ||
|
||
assert grads.shape == (2, 3, 800, 800) | ||
|
||
|
||
@pytest.mark.only_with_platform("pytorch") | ||
def test_compute_losses(get_pytorch_detr): | ||
|
||
object_detector, x_test, y_test = get_pytorch_detr | ||
object_detector.attack_losses = "loss_ce" | ||
losses = object_detector.compute_losses(x=x_test, y=y_test) | ||
assert len(losses) == 1 | ||
|
||
|
||
@pytest.mark.only_with_platform("pytorch") | ||
def test_compute_loss(get_pytorch_detr): | ||
|
||
object_detector, x_test, _ = get_pytorch_detr | ||
# Create labels | ||
result = object_detector.predict(x_test) | ||
|
||
y = [ | ||
{ | ||
"boxes": result[0]["boxes"], | ||
"labels": result[0]["labels"], | ||
"scores": np.ones_like(result[0]["labels"]), | ||
}, | ||
{ | ||
"boxes": result[1]["boxes"], | ||
"labels": result[1]["labels"], | ||
"scores": np.ones_like(result[1]["labels"]), | ||
}, | ||
] | ||
|
||
# Compute loss | ||
loss = object_detector.compute_loss(x=x_test, y=y) | ||
|
||
assert pytest.approx(3.9634, abs=0.01) == float(loss) | ||
|
||
|
||
@pytest.mark.only_with_platform("pytorch") | ||
def test_pgd(get_pytorch_detr): | ||
|
||
object_detector, x_test, y_test = get_pytorch_detr | ||
|
||
from art.attacks.evasion import ProjectedGradientDescent | ||
from PIL import Image | ||
|
||
imgs = [] | ||
for i in x_test: | ||
img = Image.fromarray((i * 255).astype(np.uint8).transpose(1, 2, 0)) | ||
img = img.resize(size=(800, 800)) | ||
imgs.append(np.array(img)) | ||
x_test = np.array(imgs).transpose(0, 3, 1, 2) | ||
|
||
attack = ProjectedGradientDescent(estimator=object_detector, max_iter=2) | ||
x_test_adv = attack.generate(x=x_test, y=y_test) | ||
np.testing.assert_raises(AssertionError, np.testing.assert_array_equal, x_test_adv, x_test) |