Skip to content

Commit

Permalink
Add testcodes to check equivalence between fit/transform and fit_tran…
Browse files Browse the repository at this point in the history
…sform

Signed-off-by: Sangmin Yoon <sanspareilsmyn@gmail.com>
  • Loading branch information
sanspareilsmyn committed Dec 30, 2024
1 parent 7152cb9 commit 6ac1599
Showing 1 changed file with 70 additions and 2 deletions.
72 changes: 70 additions & 2 deletions tests/test_disparate_impact_remover.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,5 @@
import numpy as np

from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC as SVM
from sklearn.preprocessing import MinMaxScaler

from aif360.algorithms.preprocessing import DisparateImpactRemover
Expand Down Expand Up @@ -78,3 +76,73 @@ def test_adult():

assert after > before
assert abs(1 - after) <= 0.2


def test_fit_transform_no_repair():
"""Test case for fit_transform with no repair (repair_level=0.0)"""
protected = 'sex'
ad = AdultDataset(protected_attribute_names=[protected],
privileged_classes=[['Male']], categorical_features=[],
features_to_keep=['age', 'education-num'])

di = DisparateImpactRemover(repair_level=0.0)
ad_repd = di.fit_transform(ad)

# Assert that the transformed dataset is the same as the original
assert np.array_equal(ad.features, ad_repd.features), "Transformed dataset should be the same as original."


def test_fit_transform_full_repair():
"""Test case for fit_transform with full repair (repair_level=1.0)"""
protected = 'sex'
ad = AdultDataset(protected_attribute_names=[protected],
privileged_classes=[['Male']], categorical_features=[],
features_to_keep=['age', 'education-num'])

di = DisparateImpactRemover(repair_level=1.0)
ad_repd = di.fit_transform(ad)

# Assert that the transformed dataset is different from the original
assert not np.array_equal(ad.features, ad_repd.features), "Transformed dataset should differ from original."


def test_transform_after_fit():
"""Test case for transform method after fitting"""
protected = 'sex'
ad = AdultDataset(protected_attribute_names=[protected],
privileged_classes=[['Male']], categorical_features=[],
features_to_keep=['age', 'education-num'])

di = DisparateImpactRemover(repair_level=1.0)

# Fit the model
di.fit(ad)

# Transform the dataset
ad_repd = di.transform(ad)

# Assert that the transformed dataset is different from the original
assert not np.array_equal(ad.features, ad_repd.features), "Transformed dataset should differ from original."


def test_fit_transform_equivalence():
"""Test case to ensure fit + transform is equivalent to fit_transform."""
protected = 'sex'
ad = AdultDataset(protected_attribute_names=[protected],
privileged_classes=[['Male']], categorical_features=[],
features_to_keep=['age', 'education-num'])

# Create DisparateImpactRemover instance with repair level 1.0
di = DisparateImpactRemover(repair_level=1.0)

# Use fit_transform method
ad_repd_fit_transform = di.fit_transform(ad)

# Use fit followed by transform
di.fit(ad)
ad_repd_fit_then_transform = di.transform(ad)

# Assert that the two results are equal
assert np.array_equal(ad_repd_fit_transform.features, ad_repd_fit_then_transform.features), (
"Results from fit + transform should be equal to fit_transform."
)

0 comments on commit 6ac1599

Please sign in to comment.