-
Notifications
You must be signed in to change notification settings - Fork 1.9k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
This reverts commit 5a42280.
TransformerOptimus
committed
Aug 10, 2023
1 parent
909d233
commit e73bba1
Showing
13 changed files
with
21 additions
and
338 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,22 +1,12 @@ | ||
from sqlalchemy.orm import Session | ||
|
||
from superagi.models.agent_execution_feed import AgentExecutionFeed | ||
from superagi.vector_store.base import VectorStore | ||
|
||
|
||
class ToolResponseQueryManager: | ||
def __init__(self, session: Session, agent_execution_id: int,memory:VectorStore): | ||
def __init__(self, session: Session, agent_execution_id: int): | ||
self.session = session | ||
self.agent_execution_id = agent_execution_id | ||
self.memory=memory | ||
|
||
|
||
|
||
def get_last_response(self, tool_name: str = None): | ||
return AgentExecutionFeed.get_last_tool_response(self.session, self.agent_execution_id, tool_name) | ||
|
||
def get_relevant_response(self, query: str,metadata:dict, top_k: int = 5): | ||
documents = self.memory.get_matching_text(query, metadata=metadata) | ||
relevant_responses = "" | ||
for document in documents["documents"]: | ||
relevant_responses += document.text_content | ||
return relevant_responses |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,171 +0,0 @@ | ||
import json | ||
import re | ||
import uuid | ||
from typing import Any, List, Iterable, Mapping | ||
from typing import Optional, Pattern | ||
import traceback | ||
import numpy as np | ||
import redis | ||
from redis.commands.search.field import TagField, VectorField | ||
from redis.commands.search.indexDefinition import IndexDefinition, IndexType | ||
|
||
from superagi.config.config import get_config | ||
from superagi.lib.logger import logger | ||
from superagi.vector_store.base import VectorStore | ||
from superagi.vector_store.document import Document | ||
|
||
DOC_PREFIX = "doc:" | ||
|
||
CONTENT_KEY = "content" | ||
METADATA_KEY = "metadata" | ||
VECTOR_SCORE_KEY = "vector_score" | ||
|
||
|
||
class Redis(VectorStore): | ||
|
||
def delete_embeddings_from_vector_db(self, ids: List[str]) -> None: | ||
pass | ||
|
||
def add_embeddings_to_vector_db(self, embeddings: dict) -> None: | ||
pass | ||
|
||
def get_index_stats(self) -> dict: | ||
pass | ||
|
||
DEFAULT_ESCAPED_CHARS = r"[,.<>{}\[\]\\\"\':;!@#$%^&*()\-+=~\/ ]" | ||
|
||
def __init__(self, index: Any, embedding_model: Any): | ||
""" | ||
Args: | ||
index: An instance of a Redis index. | ||
embedding_model: An instance of a BaseEmbedding model. | ||
vector_group_id: vector group id used to index similar vectors. | ||
""" | ||
redis_url = get_config('REDIS_URL') | ||
self.redis_client = redis.Redis.from_url("redis://" + redis_url + "/0", decode_responses=True) | ||
# self.redis_client = redis.Redis(host=redis_host, port=redis_port) | ||
self.index = index | ||
self.embedding_model = embedding_model | ||
self.content_key = "content", | ||
self.metadata_key = "metadata" | ||
self.index = index | ||
self.vector_key = "content_vector" | ||
|
||
def build_redis_key(self, prefix: str) -> str: | ||
"""Build a redis key with a prefix.""" | ||
return f"{prefix}:{uuid.uuid4().hex}" | ||
|
||
def add_texts(self, texts: Iterable[str], | ||
metadatas: Optional[List[dict]] = None, | ||
embeddings: Optional[List[List[float]]] = None, | ||
ids: Optional[list[str]] = None, | ||
**kwargs: Any) -> List[str]: | ||
pipe = self.redis_client.pipeline() | ||
prefix = DOC_PREFIX + str(self.index) | ||
keys = [] | ||
for i, text in enumerate(texts): | ||
id = ids[i] if ids else self.build_redis_key(prefix) | ||
metadata = metadatas[i] if metadatas else {} | ||
embedding = self.embedding_model.get_embedding(text) | ||
embedding_arr = np.array(embedding, dtype=np.float32) | ||
|
||
pipe.hset(id, mapping={CONTENT_KEY: text, self.vector_key: embedding_arr.tobytes(), | ||
METADATA_KEY: json.dumps(metadata)}) | ||
|
||
keys.append(id) | ||
pipe.execute() | ||
return keys | ||
|
||
def get_matching_text(self, query: str, top_k: int = 5, metadata: Optional[dict] = None, **kwargs: Any) -> List[Document]: | ||
|
||
embed_text = self.embedding_model.get_embedding(query) | ||
from redis.commands.search.query import Query | ||
hybrid_fields = self._convert_to_redis_filters(metadata) | ||
|
||
base_query = f"{hybrid_fields}=>[KNN {top_k} @{self.vector_key} $vector AS vector_score]" | ||
return_fields = [METADATA_KEY,CONTENT_KEY, "vector_score","id"] | ||
|
||
|
||
query = ( | ||
Query(base_query) | ||
.return_fields(*return_fields) | ||
.sort_by("vector_score") | ||
.paging(0, top_k) | ||
.dialect(2) | ||
) | ||
|
||
params_dict: Mapping[str, str] = { | ||
"vector": np.array(embed_text) | ||
.astype(dtype=np.float32) | ||
.tobytes() | ||
} | ||
|
||
# print(self.index) | ||
results = self.redis_client.ft(self.index).search(query,params_dict) | ||
|
||
# Prepare document results | ||
documents = [] | ||
for result in results.docs: | ||
documents.append( | ||
Document( | ||
text_content=result.content, | ||
metadata=json.loads(result.metadata) | ||
) | ||
) | ||
return {"documents": documents} | ||
|
||
|
||
|
||
def _convert_to_redis_filters(self, metadata: Optional[dict] = {}) -> str: | ||
if metadata is None or len(metadata) == 0: | ||
return "*" | ||
filter_strings = [] | ||
for key in metadata.keys(): | ||
filter_string = "@%s:{%s}" % (key, self.escape_token(str(metadata[key]))) | ||
filter_strings.append(filter_string) | ||
|
||
joined_filter_strings = " & ".join(filter_strings) | ||
return f"({joined_filter_strings})" | ||
|
||
def create_index(self): | ||
try: | ||
# check to see if index exists | ||
temp = self.redis_client.ft(self.index).info() | ||
logger.info(temp) | ||
logger.info("Index already exists!") | ||
except: | ||
vector_dimensions = self.embedding_model.get_embedding("sample") | ||
# schema | ||
schema = ( | ||
TagField("tag"), # Tag Field Name | ||
VectorField(self.vector_key, # Vector Field Name | ||
"FLAT", { # Vector Index Type: FLAT or HNSW | ||
"TYPE": "FLOAT32", # FLOAT32 or FLOAT64 | ||
"DIM": len(vector_dimensions), # Number of Vector Dimensions | ||
"DISTANCE_METRIC": "COSINE", # Vector Search Distance Metric | ||
} | ||
) | ||
) | ||
|
||
# index Definition | ||
definition = IndexDefinition(prefix=[DOC_PREFIX], index_type=IndexType.HASH) | ||
|
||
# create Index | ||
self.redis_client.ft(self.index).create_index(fields=schema, definition=definition) | ||
|
||
def escape_token(self, value: str) -> str: | ||
""" | ||
Escape punctuation within an input string. Taken from RedisOM Python. | ||
Args: | ||
value (str): The input string. | ||
Returns: | ||
str: The escaped string. | ||
""" | ||
escaped_chars_re = re.compile(Redis.DEFAULT_ESCAPED_CHARS) | ||
|
||
def escape_symbol(match: re.Match) -> str: | ||
return f"\\{match.group(0)}" | ||
|
||
return escaped_chars_re.sub(escape_symbol, value) | ||
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file was deleted.
Oops, something went wrong.