Skip to content

Commit

Permalink
Use GenericGraph for testing spanningtrees algorithms (JuliaGraphs#276)
Browse files Browse the repository at this point in the history
  • Loading branch information
simonschoelly authored Jul 5, 2023
1 parent 794beff commit d3b2706
Show file tree
Hide file tree
Showing 3 changed files with 27 additions and 17 deletions.
24 changes: 15 additions & 9 deletions test/spanningtrees/boruvka.jl
Original file line number Diff line number Diff line change
Expand Up @@ -14,17 +14,19 @@
max_vec_mst = Vector{Edge}([Edge(1, 4), Edge(2, 4), Edge(1, 3)])
cost_max_vec_mst = sum(distmx[src(e), dst(e)] for e in max_vec_mst)

for g in testgraphs(g4)
for g in test_generic_graphs(g4)
# Testing Boruvka's algorithm
res1 = boruvka_mst(g, distmx)
g1t = SimpleGraph(res1.mst)
edges1 = [Edge(src(e), dst(e)) for e in res1.mst]
g1t = GenericGraph(SimpleGraph(edges1))
@test res1.weight == cost_mst
# acyclic graphs have n - c edges
@test nv(g1t) - length(connected_components(g1t)) == ne(g1t)
@test nv(g1t) == nv(g)

res2 = boruvka_mst(g, distmx; minimize=false)
g2t = SimpleGraph(res2.mst)
edges2 = [Edge(src(e), dst(e)) for e in res2.mst]
g2t = GenericGraph(SimpleGraph(edges2))
@test res2.weight == cost_max_vec_mst
@test nv(g2t) - length(connected_components(g2t)) == ne(g2t)
@test nv(g2t) == nv(g)
Expand Down Expand Up @@ -53,15 +55,17 @@
])
weight_max_vec2 = sum(distmx_sec[src(e), dst(e)] for e in max_vec2)

for g in testgraphs(gx)
for g in test_generic_graphs(gx)
res3 = boruvka_mst(g, distmx_sec)
g3t = SimpleGraph(res3.mst)
edges3 = [Edge(src(e), dst(e)) for e in res3.mst]
g3t = GenericGraph(SimpleGraph(edges3))
@test res3.weight == weight_vec2
@test nv(g3t) - length(connected_components(g3t)) == ne(g3t)
@test nv(g3t) == nv(gx)

res4 = boruvka_mst(g, distmx_sec; minimize=false)
g4t = SimpleGraph(res4.mst)
edges4 = [Edge(src(e), dst(e)) for e in res4.mst]
g4t = GenericGraph(SimpleGraph(edges4))
@test res4.weight == weight_max_vec2
@test nv(g4t) - length(connected_components(g4t)) == ne(g4t)
@test nv(g4t) == nv(gx)
Expand Down Expand Up @@ -114,15 +118,17 @@
])
weight_max_vec3 = sum(distmx_third[src(e), dst(e)] for e in max_vec3)

for g in testgraphs(gd)
for g in test_generic_graphs(gd)
res5 = boruvka_mst(g, distmx_third)
g5t = SimpleGraph(res5.mst)
edges5 = [Edge(src(e), dst(e)) for e in res5.mst]
g5t = GenericGraph(SimpleGraph(edges5))
@test res5.weight == weight_vec3
@test nv(g5t) - length(connected_components(g5t)) == ne(g5t)
@test nv(g5t) == nv(gd)

res6 = boruvka_mst(g, distmx_third; minimize=false)
g6t = SimpleGraph(res6.mst)
edges6 = [Edge(src(e), dst(e)) for e in res6.mst]
g6t = GenericGraph(SimpleGraph(edges6))
@test res6.weight == weight_max_vec3
@test nv(g6t) - length(connected_components(g6t)) == ne(g6t)
@test nv(g6t) == nv(gd)
Expand Down
16 changes: 10 additions & 6 deletions test/spanningtrees/kruskal.jl
Original file line number Diff line number Diff line change
Expand Up @@ -10,11 +10,14 @@

vec_mst = Vector{Edge}([Edge(1, 2), Edge(3, 4), Edge(2, 3)])
max_vec_mst = Vector{Edge}([Edge(2, 4), Edge(1, 4), Edge(1, 3)])
for g in testgraphs(g4)
for g in test_generic_graphs(g4)
# Testing Kruskal's algorithm
mst = @inferred(kruskal_mst(g, distmx))
@test mst == vec_mst
@test @inferred(kruskal_mst(g, distmx, minimize=false)) == max_vec_mst
max_mst = @inferred(kruskal_mst(g, distmx, minimize=false))
# GenericEdge currently does not implement any comparison operators
# so instead we compare tuples of source and target vertices
@test sort([(src(e), dst(e)) for e in mst]) == sort([(src(e), dst(e)) for e in vec_mst])
@test sort([(src(e), dst(e)) for e in max_mst]) == sort([(src(e), dst(e)) for e in max_vec_mst])
end
# second test
distmx_sec = [
Expand All @@ -35,9 +38,10 @@
max_vec2 = Vector{Edge}([
Edge(5, 7), Edge(1, 7), Edge(4, 7), Edge(3, 7), Edge(5, 8), Edge(2, 3), Edge(5, 6)
])
for g in testgraphs(gx)
for g in test_generic_graphs(gx)
mst2 = @inferred(kruskal_mst(g, distmx_sec))
@test mst2 == vec2
@test @inferred(kruskal_mst(g, distmx_sec, minimize=false)) == max_vec2
max_mst2 = @inferred(kruskal_mst(g, distmx_sec, minimize=false))
@test sort([(src(e), dst(e)) for e in mst2]) == sort([(src(e), dst(e)) for e in vec2])
@test sort([(src(e), dst(e)) for e in max_mst2]) == sort([(src(e), dst(e)) for e in max_vec2])
end
end
4 changes: 2 additions & 2 deletions test/spanningtrees/prim.jl
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
]

vec_mst = Vector{Edge}([Edge(1, 2), Edge(2, 3), Edge(3, 4)])
for g in testgraphs(g4)
for g in test_generic_graphs(g4)
# Testing Prim's algorithm
mst = @inferred(prim_mst(g, distmx))
@test mst == vec_mst
Expand All @@ -31,7 +31,7 @@
Edge(8, 2), Edge(1, 3), Edge(3, 4), Edge(6, 5), Edge(8, 6), Edge(3, 7), Edge(1, 8)
])
gx = SimpleGraph(distmx_sec)
for g in testgraphs(gx)
for g in test_generic_graphs(gx)
mst2 = @inferred(prim_mst(g, distmx_sec))
@test mst2 == vec2
end
Expand Down

0 comments on commit d3b2706

Please sign in to comment.