forked from datawhalechina/competition-baseline
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
cfb7ce7
commit 3d0d5e2
Showing
1 changed file
with
95 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,95 @@ | ||
import pandas as pd | ||
import numpy as np | ||
|
||
from sklearn.metrics import mean_squared_error | ||
from sklearn.model_selection import KFold | ||
|
||
import lightgbm as lgb | ||
|
||
import warnings | ||
warnings.filterwarnings('ignore') | ||
|
||
train = pd.read_csv('train.csv') | ||
test = pd.read_csv('test.csv') | ||
sample_submit = pd.read_csv('sample_submit.csv') | ||
|
||
df = pd.concat([train, test], axis=0, ignore_index=True) | ||
|
||
def lag_feature_adv(df, lags, col): | ||
''' | ||
历史N周平移特征 | ||
''' | ||
tmp = df[['week','shop_id','item_id',col]] | ||
for i in lags: | ||
shifted = tmp.copy() | ||
shifted.columns = ['week','shop_id','item_id', col+'_lag_'+str(i)+'_adv'] | ||
shifted['week'] += i | ||
df = pd.merge(df, shifted, on=['week','shop_id','item_id'], how='left') | ||
df[col+'_lag_'+str(i)+'_adv'] = df[col+'_lag_'+str(i)+'_adv'] | ||
return df | ||
|
||
df = lag_feature_adv(df, [1, 2, 3], 'weekly_sales') | ||
|
||
x_train = df[df.week < 33].drop(['weekly_sales'], axis=1) | ||
y_train = df[df.week < 33]['weekly_sales'] | ||
x_test = df[df.week == 33].drop(['weekly_sales'], axis=1) | ||
|
||
|
||
def cv_model(clf, train_x, train_y, test_x, clf_name='lgb'): | ||
folds = 5 | ||
seed = 1024 | ||
kf = KFold(n_splits=folds, shuffle=True, random_state=seed) | ||
|
||
train = np.zeros(train_x.shape[0]) | ||
test = np.zeros(test_x.shape[0]) | ||
|
||
categorical_feature = ['shop_id','item_id','item_category_id'] | ||
cv_scores = [] | ||
|
||
for i, (train_index, valid_index) in enumerate(kf.split(train_x, train_y)): | ||
print('************************************ {} ************************************'.format(str(i+1))) | ||
trn_x, trn_y, val_x, val_y = train_x.iloc[train_index], train_y[train_index], train_x.iloc[valid_index], train_y[valid_index] | ||
|
||
train_matrix = clf.Dataset(trn_x, label=trn_y) | ||
valid_matrix = clf.Dataset(val_x, label=val_y) | ||
|
||
params = { | ||
'boosting_type': 'gbdt', | ||
'objective': 'mse', | ||
'metric': 'mse', | ||
'min_child_weight': 5, | ||
'num_leaves': 2 ** 7, | ||
'lambda_l2': 10, | ||
'feature_fraction': 0.9, | ||
'bagging_fraction': 0.9, | ||
'bagging_freq': 4, | ||
'learning_rate': 0.05, | ||
'seed': 1024, | ||
'n_jobs':-1, | ||
'silent': True, | ||
'verbose': -1, | ||
} | ||
|
||
model = clf.train(params, train_matrix, 5000, valid_sets=[train_matrix, valid_matrix], | ||
categorical_feature = categorical_feature, | ||
verbose_eval=500,early_stopping_rounds=200) | ||
val_pred = model.predict(val_x, num_iteration=model.best_iteration) | ||
test_pred = model.predict(test_x, num_iteration=model.best_iteration) | ||
|
||
train[valid_index] = val_pred | ||
test += test_pred / kf.n_splits | ||
cv_scores.append(mean_squared_error(val_y, val_pred)) | ||
|
||
print(cv_scores) | ||
|
||
print("%s_scotrainre_list:" % clf_name, cv_scores) | ||
print("%s_score_mean:" % clf_name, np.mean(cv_scores)) | ||
print("%s_score_std:" % clf_name, np.std(cv_scores)) | ||
return train, test | ||
|
||
lgb_train, lgb_test = cv_model(lgb, x_train, y_train, x_test) | ||
|
||
|
||
sample_submit['weekly_sales'] = lgb_test | ||
sample_submit['weekly_sales'] = sample_submit['weekly_sales'].apply(lambda x:x if x>0 else 0).values | ||
sample_submit.to_csv('baseline_result.csv', index=False) |