Skip to content

TomSheng21/GeoNet_UniDA_Track

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

1st in the ICCV-2023 GeoUniDA challenge

[Challenge] [Leaderboard] [Paper]

Team: CASIA-TIM (Members: Lijun Sheng, Zhengbo Wang, Jian Liang)

File structure:

|–– readme.md
|–– data_list/
|   |–– UNIDA/
|	|	|–– usa_train.txt
|	|	|–– asia_train.txt
|	|	|–– asia_test.txt
|	|	|–– test.txt
|   |–– OBJ/
|   |–– PLACE/
|   
|–– main_unida.py
|–– main_places.py
|–– main_imnet.py
|–– data_list.py
|–– network.py

Prerequisites:

  • python == 3.10.6
  • torch ==1.12.0
  • torchvision == 0.13.0
  • numpy, scipy, sklearn, PIL, argparse

Dataset:

We use the dataset provided by the challenge to generate txt files and place them in the data_list folder according to the names of each dataset (i.e., UNIDA, OBJ, PLACE). If you want to run the code, please modify the absolute paths in all files under data_list folder.

Note:

We integrate the source model training, model adaptation, and test file generation in single python code. The test file of the source model is saved as source_test.txt, and the test file based on the adaptive model is saved as target_test.txt.

Training:

  1. GeoUniDA

python main_unida.py --dset UNIDA --gpu_id 0 
  1. GeoImNet

python main_imnet.py --dset OBJ --gpu_id 1 
  1. GeoPlace

python main_place.py --dset PLACE --gpu_id 2 

Citation

If you find this code useful for your research, please cite our paper

@misc{sheng2023self, 
 title={Self-training solutions for the ICCV 2023 GeoNet Challenge}, 
 author={Sheng, Lijun and Wang, Zhengbo and Liang, Jian}, 
 year={2023}
}

Contact

About

1st in the ICCV-2023 GeoUniDA challenge

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%