Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
103 changes: 103 additions & 0 deletions docs/pretrained.rst
Original file line number Diff line number Diff line change
Expand Up @@ -241,6 +241,28 @@ input output configuration:
.. collapse:: Model names

- hovernet_original-consep


.. collapse:: Input Output Configuration Details

.. code-block:: python

from tiatoolbox.models import IOSegmentorConfig
ioconfig = IOSegmentorConfig(
input_resolutions=[
{'units': 'mpp', 'resolution': 0.25}
],
output_resolutions=[
{'units': 'mpp', 'resolution': 0.25}
],
tile_shape=[2048, 2048]
patch_input_shape=(252, 252),
patch_output_shape=(252, 252),
stride_shape=(150, 150),
save_resolution={'units': 'mpp', 'resolution': 0.25}
)

.. collapse:: Model names
- micronet_hovernet-consep

Kumar Dataset
Expand Down Expand Up @@ -275,6 +297,87 @@ input output configuration:

- hovernet_original_kumar

Nucleus Detection
^^^^^^^^^^^^^^^^^

CRCHisto Dataset
--------------

We provide the following models trained using the `CRCHisto dataset <https://warwick.ac.uk/fac/cross_fac/tia/data/crchistolabelednucleihe//>`_, which uses the following
input output configuration:

.. collapse:: Input Output Configuration Details

.. code-block:: python

from tiatoolbox.models import IOPatchPredictorConfig
ioconfig = IOPatchPredictorConfig(
patch_input_shape=(31, 31),
stride_shape=(8, 8),
input_resolutions=[{"resolution": 0.25, "units": "mpp"}]
)


.. collapse:: Model names

- sccnn-crchisto

.. collapse:: Input Output Configuration Details

.. code-block:: python

from tiatoolbox.models import IOPatchPredictorConfig
ioconfig = IOPatchPredictorConfig(
patch_input_shape=(252, 252),
stride_shape=(150, 150),
input_resolutions=[{"resolution": 0.25, "units": "mpp"}]
)


.. collapse:: Model names

- mapde-crchisto


CoNIC Dataset
--------------

We provide the following models trained using the `CoNIC dataset <https://conic-challenge.grand-challenge.org/>`_, which uses the following
input output configuration:

.. collapse:: Input Output Configuration Details

.. code-block:: python

from tiatoolbox.models import IOPatchPredictorConfig
ioconfig = IOPatchPredictorConfig(
patch_input_shape=(31, 31),
stride_shape=(8, 8),
input_resolutions=[{"resolution": 0.25, "units": "mpp"}]
)


.. collapse:: Model names

- sccnn-conic

.. collapse:: Input Output Configuration Details

.. code-block:: python

from tiatoolbox.models import IOPatchPredictorConfig
ioconfig = IOPatchPredictorConfig(
patch_input_shape=(252, 252),
stride_shape=(150, 150),
input_resolutions=[{"resolution": 0.25, "units": "mpp"}]
)


.. collapse:: Model names

- mapde-conic


Multi-Task Segmentation
^^^^^^^^^^^^^^^^^^^^^^^

Expand Down
22 changes: 22 additions & 0 deletions tiatoolbox/data/pretrained_model.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -777,44 +777,66 @@ mapde-crchisto:
architecture:
class: mapde.MapDe
kwargs:
input_resolutions:
- { "units": "mpp", "resolution": 0.25 }
num_input_channels: 3
min_distance: 4
threshold_abs: 250
num_classes: 1
tile_shape: [ 2048, 2048 ]
patch_input_shape: [ 252, 252 ]
stride_shape: [ 150, 150 ]

mapde-conic:
url: https://tiatoolbox.dcs.warwick.ac.uk/models/detection/mapde-conic.pth
architecture:
class: mapde.MapDe
kwargs:
input_resolutions:
- { "units": "mpp", "resolution": 0.25 }
num_input_channels: 3
min_distance: 3
threshold_abs: 205
num_classes: 1
tile_shape: [ 2048, 2048 ]
patch_input_shape: [ 252, 252 ]
stride_shape: [ 150, 150 ]

sccnn-crchisto:
url: https://tiatoolbox.dcs.warwick.ac.uk/models/detection/sccnn-crchisto.pth
architecture:
class: sccnn.SCCNN
kwargs:
input_resolutions:
- { "units": "mpp", "resolution": 0.25 }
num_input_channels: 3
out_height: 13
out_width: 13
radius: 12
min_distance: 6
threshold_abs: 0.20
tile_shape: [ 2048, 2048 ]
patch_input_shape: [ 31, 31 ]
patch_output_shape: [ 13, 13 ]
stride_shape: [ 8, 8 ]

sccnn-conic:
url: https://tiatoolbox.dcs.warwick.ac.uk/models/detection/sccnn-conic.pth
architecture:
class: sccnn.SCCNN
kwargs:
input_resolutions:
- { "units": "mpp", "resolution": 0.25 }
num_input_channels: 3
out_height: 13
out_width: 13
radius: 12
min_distance: 5
threshold_abs: 0.05
tile_shape: [ 2048, 2048 ]
patch_input_shape: [ 31, 31 ]
patch_output_shape: [ 13, 13 ]
stride_shape: [ 8, 8 ]

nuclick_original-pannuke:
url: https://tiatoolbox.dcs.warwick.ac.uk/models/seg/nuclick_original-pannuke.pth
Expand Down
5 changes: 3 additions & 2 deletions tiatoolbox/models/architecture/sccnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -90,13 +90,14 @@ class SCCNN(ModelABC):
def __init__(
self,
num_input_channels: int = 3,
out_height: int = 13,
out_width: int = 13,
patch_output_shape: Tuple[int, int] = (13, 13),
radius: int = 12,
min_distance: int = 6,
threshold_abs: float = 0.20,
) -> None:
super().__init__()
out_height = patch_output_shape[0]
out_width = patch_output_shape[1]
self.in_ch = num_input_channels
self.out_height = out_height
self.out_width = out_width
Expand Down