This repository is official Pytorch implementations of SGN in the following paper.
Simyung Chang, SeongUk Park, John Yang and Nojun Kwak, "Sym-Parameterized Dynamic Inference for Mixed-Domain Image Translation", ICCV2019, arXiv
This code is built on Pytorch-CycleGAN and tested on Pytorch 0.4.1.
Dynamic Inference for Mixed-Domain Image Translation.
The concept of sym-parameter.
Overall Structure of SGN for Three Different Losses.
Video translation result of SGN : SGN-Video
./download_dataset <dataset_name>
<dataset_name> for the models in the paper.
Model 1: vangogh2photo
Model 2: ukiyoe2photo
Model 3 : summer2winter_yosemite, monet2photo
python train.py --dataroot <data_dir> --style_image <image_file>
To train the Model 1
python train.py --dataroot 'datasets/vangogh2photo/' --style_image 'images/style-images/udnie.jpg'
The pre-trained models can be downloaded from Google Drive.
Copy the models in pretrained/
python test.py --dataroot <data_dir> --generator <trained_file>
Test Model1 with pre-trained check point.
python test.py --dataroot 'datasets/vangogh2photo' --generator 'pretrained/Model1.pth'
@article{chang2018image,
title={Image Translation to Mixed-Domain using Sym-Parameterized Generative Network},
author={Chang, Simyung and Park, SeongUk and Yang, John and Kwak, Nojun},
journal={arXiv preprint arXiv:1811.12362},
year={2018}
}
Our code is built on Pytorch-CycleGAN.