forked from SmirkCao/Lihang
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
105 additions
and
24 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,31 +1,36 @@ | ||
# 符号表 | ||
|
||
1. $X=[x_{ij}]_{m\times n}$ 矩阵 | ||
1. $X=\{x_1, x_2, \dots ,x_n\}$ $n$个样本的集合 $P_{263}$ | ||
1. $X$ 定义在输入空间$\mathcal X$上的随机向量 | ||
1. $Y$ 定义在输出空间$\mathcal Y$上的随机向量 | ||
1. $\mathcal{Z}$隐式结构空间 $P_8$ | ||
1. $A_G$类的样本散布矩阵 $P_{259}$ | ||
1. $C^*$ 最优划分 $P_{261}$ | ||
1. $D_G$ 类的直径 | ||
1. $D=[d_{ij}]_{n \times n}$ $n$个样本之间的距离矩阵$D$ $P_{261}$ | ||
1. $D=\{d_1,d_2,\cdots,d_n\}$ $n$个文本的集合 $P_{322}$ | ||
1. $D(A||B)=\sum\limits_{i,j}\left(a_{ij}\log\frac{a_{ij}}{b{ij}}-a_{ij}+b_{ij}\right)$ 散度损失函数$P_{322}$ | ||
1. $\Lambda$ $n$阶对角矩阵 | ||
1. $\mathcal{M}$是$\mathbf{R}^{m\times n}$中所有秩不超过$k$的矩阵集合,$0<k<r$ $P_{287}$ | ||
1. $m, M$ 样本特征数,维数 $P_{261}$ | ||
1. $m$ 协方差矩阵的特征值之和 $P_{309}$ | ||
1. $n,N,n_G$ 样本数,类的样本数 | ||
1. $\theta$ 参数 | ||
1. $U$ 训练数据 $P_8, P_{248}, P_{245}$ | ||
1. $U$ 表示$m$阶正交矩阵 ,$V$表示$n$阶正交矩阵,$\mit\Sigma$表示矩形对角矩阵,$P_{271}$ | ||
1. $T$ 训练数据集 $P_{59}$ | ||
1. $T$ 和$V$给定的两个正数 $P_{259}$ | ||
1. $T$ 决策树 $P_{78}$ | ||
1. $T:x\rightarrow Ax$ 线性变换 $P_{279}$ | ||
1. $A_G$类的样本散布矩阵 $P_{259}$ | ||
1. $R(A)$ $A$的值域 $P_{275}$ | ||
1. $R(A)^\bot$ 表示$R(A)$的正交补 $P_{276}$ | ||
1. $r$ 矩阵的秩 $P_{277}$ | ||
1. $S_G$类的样本协方差矩阵 $P_{259}$ | ||
1. $D_G$ 类的直径 | ||
1. $D=[d_{ij}]_{n \times n}$ $n$个样本之间的距离矩阵$D$ $P_{261}$ | ||
1. $C^*$ 最优划分 $P_{261}$ | ||
1. $\mathcal{S}$ 状态空间 $P_{360}$ | ||
1. $T$ 训练数据集 $P_{59}$ | ||
1. $T$ 和$V$给定的两个正数 $P_{259}$ | ||
1. $T$ 决策树 $P_{78}$ | ||
1. $T:x\rightarrow Ax$ 线性变换 $P_{279}$ | ||
1. $U$ 训练数据 $P_8, P_{248}, P_{245}$ | ||
1. $U$ 表示$m$阶正交矩阵 ,$V$表示$n$阶正交矩阵,$\mit\Sigma$表示矩形对角矩阵,$P_{271}$ | ||
1. $W(C)$ 能量,表示相同类中的样本的相似程度。越相似,越小。 $P_{264}$ | ||
1. $W=A^\mathrm TA$ 对称矩阵 $P_{282}$ | ||
1. $\Lambda$ $n$阶对角矩阵 | ||
1. $\mathcal{M}$是$\mathbf{R}^{m\times n}$中所有秩不超过$k$的矩阵集合,$0<k<r$ $P_{287}$ | ||
1. $W=\{w_1,w_2,\cdots, w_m\}$ $m$个单词集合 $P_{322}$ | ||
1. $\mathcal{W}=\{w_1,w_2,\cdots, w_k\}$ $k$个元素组成的集合 $P_{389}$ | ||
1. $x_i^*$是$x_i$的规范化随机变量。 $P_{309}$ | ||
1. | ||
1. $X=[x_{ij}]_{m\times n}$ 矩阵 | ||
1. $X=\{x_1, x_2, \dots ,x_n\}$ $n$个样本的集合 $P_{263}$ | ||
1. $X$ 定义在输入空间$\mathcal X$上的随机向量 | ||
1. $X=\{X_0,X_1,\cdots,\X_t,\cdots\}$ 马尔可夫链 $P_{360}$ | ||
1. $Y$ 定义在输出空间$\mathcal Y$上的随机向量 | ||
1. $\mathcal{Z}$隐式结构空间 $P_8$ |