Skip to content

CIFAR10DVS复现精度低1个点 #12

@Bobby-xb

Description

@Bobby-xb

作者您好,我在实际跑spikingformer的CIFAR10DVS时,复现精度为80.3,论文精度汇报为81.3。

这是我的部分训练日志,没有修改默认的设置:
Namespace(model='SEWResNet', dataset='cifar10dvs', num_classes=10, data_path='', device='cuda', batch_size=16, workers=4, print_freq=256, output_dir='./logs', resume='', sync_bn=False, test_only=False, amp=True, world_size=1, dist_url='env://', tb=True, T=16, opt='adamw', opt_eps=1e-08, opt_betas=None, weight_decay=0.06, momentum=0.9, connect_f='ADD', T_train=None, sched='cosine', lr=0.001, lr_noise=None, lr_noise_pct=0.67, lr_noise_std=1.0, lr_cycle_mul=1.0, lr_cycle_limit=1, warmup_lr=1e-05, min_lr=1e-05, epochs=96, epoch_repeats=0.0, start_epoch=0, decay_epochs=20, warmup_epochs=10, cooldown_epochs=10, patience_epochs=10, decay_rate=0.1, smoothing=0.1, mixup=0.5, cutmix=0.0, cutmix_minmax=None, mixup_prob=0.5, mixup_switch_prob=0.5, mixup_mode='batch', mixup_off_epoch=0, distributed=False)
Loading data
The directory [/dataset/CIFAR10DVS/frames_number_16_split_by_number] already exists.
Took 68.00592994689941
Creating data loaders
Creating model
number of params: 2568714
purge_step_train=0, purge_step_te=0
Start training
......
Epoch: [105] [ 0/562] eta: 0:07:32 lr: 1e-05 img/s: 47.72630481488409 loss: 0.5274 (0.5274) acc1: 100.0000 (100.0000) acc5: 100.0000 (100.0000) time: 0.8052 data: 0.4699 max mem: 4091
Epoch: [105] [256/562] eta: 0:01:25 lr: 1e-05 img/s: 58.787906183040135 loss: 0.5334 (0.5567) acc1: 100.0000 (98.9056) acc5: 100.0000 (100.0000) time: 0.2857 data: 0.0002 max mem: 4091
Epoch: [105] [512/562] eta: 0:00:13 lr: 1e-05 img/s: 52.48202004845539 loss: 0.5374 (0.5547) acc1: 100.0000 (99.1228) acc5: 100.0000 (99.9756) time: 0.2597 data: 0.0002 max mem: 4091
Epoch: [105] Total time: 0:02:37
Test: [ 0/63] eta: 0:00:33 loss: 0.9925 (0.9925) acc1: 68.7500 (68.7500) acc5: 93.7500 (93.7500) time: 0.5348 data: 0.4309 max mem: 4091
Test: Total time: 0:00:06
Acc@1 = 79.9, Acc@5 = 97.3, loss = 0.7041220109141062
Namespace(model='SEWResNet', dataset='cifar10dvs', num_classes=10, data_path='/dataset/CIFAR10DVS', device='cuda', batch_size=16, workers=4, print_freq=256, output_dir='./logs', resume='', sync_bn=False, test_only=False, amp=True, world_size=1, dist_url='env://', tb=True, T=16, opt='adamw', opt_eps=1e-08, opt_betas=None, weight_decay=0.06, momentum=0.9, connect_f='ADD', T_train=None, sched='cosine', lr=0.001, lr_noise=None, lr_noise_pct=0.67, lr_noise_std=1.0, lr_cycle_mul=1.0, lr_cycle_limit=1, warmup_lr=1e-05, min_lr=1e-05, epochs=96, epoch_repeats=0.0, start_epoch=0, decay_epochs=20, warmup_epochs=10, cooldown_epochs=10, patience_epochs=10, decay_rate=0.1, smoothing=0.1, mixup=0.5, cutmix=0.0, cutmix_minmax=None, mixup_prob=0.5, mixup_switch_prob=0.5, mixup_mode='batch', mixup_off_epoch=0, distributed=False)
Training time 4:36:10 max_test_acc1 80.3 test_acc5_at_max_test_acc1 97.3
./logs/SEWResNet_b16_T16_wd0.06_adamw_cnf_ADD/lr0.001

请问想要复原81.3的精度需要额外修改什么配置吗?感谢您的回复。

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions