-
Notifications
You must be signed in to change notification settings - Fork 244
training
These commands are example for librispeech dataset, but we can apply similar to other datasets
./setup.sh [tpu|gpu|cpu] install
This is the example for preparing transcript files for librispeech data corpus
python examples/datasets/librispeech/prepare_transcript.py \
--directory=/path/to/dataset/train-clean-100 \
--output=/path/to/dataset/train-clean-100/transcripts.tsv
Do the same thing with train-clean-360
, train-other-500
, dev-clean
, dev-other
, test-clean
, test-other
For other datasets, please make your own script to prepare the transcript files, take a look at the prepare_transcript.py
file for more reference
The config file is under format config.yml.j2
which is jinja2 format with yaml content
Please take a look in some examples for config files in examples/*/*.yml.j2
For example:
{% import "examples/datasets/librispeech/sentencepiece/sp.yml.j2" as decoder_config with context %}
{{decoder_config}}
{% import "examples/models/transducer/conformer/small.yml.j2" as config with context %}
{{config}}
If you want to train with tfrecords
tensorflow_asr utils create_tfrecords \
--config-path=/path/to/config.yml.j2 \
--mode=\["train","eval","test"\] \
--datadir=/path/to/datadir
You can reduce the flag --modes
to --modes=\["train","eval"\]
to only create train and eval datasets
This step requires defining path to vocabulary file and other options for generating vocabulary in config file.
tensorflow_asr utils create_datasets_metadata \
--config-path=/path/to/config.yml.j2 \
--datadir=/path/to/datadir \
--dataset-type="slice"
The inputs, outputs and other options of vocabulary are defined in the config file
tensorflow_asr train \
--config-path=/path/to/config.yml.j2 \
--modeldir=/path/to/modeldir \
--datadir=/path/to/datadir \
--dataset-type=tfrecord \ # or "generator" or "slice" \
--dataset-cache \
--mxp=strict \
--bs=4 \
--ga-steps=8 \
--verbose=1 \
--jit-compile \
--device-type=tpu \
--tpu-address=local
## See others params
tensorflow_asr train --help