Skip to content

This is an easy to use package which helps to do hand tracking, face detection, etc. with use of opencv module.

Notifications You must be signed in to change notification settings

Tanay-ErrorCode/cvlearn

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 

Repository files navigation

cvlearn

An easy-to-use package that helps with hand tracking, face detection, and more using OpenCV.


Installation

  • Use Python 3.x
  • Open your terminal or command prompt and run:
pip install cvlearn

Dependencies

  • python 3.x
  • opencv-python
  • numpy
  • mediapipe

Examples

Hand Tracking

from cvlearn import HandTrackingModule as handTracker
import cv2

cap = cv2.VideoCapture(0)
detector = handTracker.handDetector()

while True:
    ret, img = cap.read()
    img = detector.findHands(img)
    
    cv2.imshow("Result", img)
    cv2.waitKey(1)

Result:

Hand Tracking


Face Detection

from cvlearn import FaceDetection as faceDetector
import cv2

cap = cv2.VideoCapture(0)
detector = faceDetector.FaceDetector()

while True:
    ret, img = cap.read()
    img = detector.findFaces(img)
    
    cv2.imshow("Result", img)
    cv2.waitKey(1)

Result:

Face Detection

Side View:

Face Side View


Face Mesh

from cvlearn import FaceMesh as fms
import cv2

cap = cv2.VideoCapture(0)
detector = fms.FaceMeshDetector()

while True:
    ret, img = cap.read()
    img, face = detector.findFaceMesh(img)

    cv2.imshow("Result", img)
    cv2.waitKey(1)

Result:

Face Mesh


Finger Counting

from cvlearn import FingerCounter as fc
import cvlearn.HandTrackingModule as handTracker
import cv2

cap = cv2.VideoCapture(0)
detector = handTracker.handDetector(maxHands=1)
counter = fc.FingerCounter()

while True:
    ret, frame = cap.read()
    frame = cv2.flip(frame, 180)

    frame = detector.findHands(frame)
    lmList, bbox = detector.findPosition(frame)

    if lmList:
        frame = counter.drawCountedFingers(frame, lmList, bbox)

    cv2.imshow("res", frame)
    key = cv2.waitKey(1)
    if key == 27:
        break

cv2.destroyAllWindows()

Result:

Finger Counter


Two Hands Finger Counting

from cvlearn import TwoHandsFingerCounter as fc
import cv2

cap = cv2.VideoCapture(0)
counter = fc.FingerCounter()

while True:
    ret, frame = cap.read()
    frame = counter.drawCountedFingers(frame)

    cv2.imshow("res", frame)
    key = cv2.waitKey(1)
    if key == 27:
        break

cv2.destroyAllWindows()

Result:

Two Hands Counter


Pose Detection

import cv2
import cvlearn
from cvlearn import PoseDetector, Utils

cap = cv2.VideoCapture(0)
detector = PoseDetector.PoseDetector(detectionCon=0.5, trackCon=0.5)

while True:
    success, img = cap.read()
    img = detector.findPose(img)
    lmList = detector.findLandmarks(img)

    cv2.imshow("Image", img)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

cap.release()
cv2.destroyAllWindows()

Result:

Pose Detection

About

This is an easy to use package which helps to do hand tracking, face detection, etc. with use of opencv module.

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages