Skip to content

Taher9845/AI_INTERVIEW

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AI Interviewer

An AI-powered interview practice application that helps users prepare for technical interviews with real-time feedback and analysis.

Features

  • Interactive chat interface with AI interviewer
  • Real-time timer for interview sessions
  • Dashboard for tracking interview history
  • Modern, responsive UI built with React and TailwindCSS

Tech Stack

Frontend

  • React
  • TailwindCSS
  • Vite

Backend

  • Python
  • Flask/FastAPI (check requirements.txt for specifics)

Setup Instructions

Backend Setup

  1. Navigate to the backend directory:
cd backend
  1. Create a virtual environment:
python -m venv venv
  1. Activate the virtual environment:
  • Windows: venv\Scripts\activate
  • Mac/Linux: source venv/bin/activate
  1. Install dependencies:
pip install -r requirements.txt
  1. Run the backend server:
python app.py

Frontend Setup

  1. Navigate to the frontend directory:
cd frontend
  1. Install dependencies:
npm install
  1. Run the development server:
npm run dev

Usage

  1. Start both backend and frontend servers
  2. Open your browser and navigate to the frontend URL (typically http://localhost:5173)
  3. Begin your AI interview practice session

Deployment

Frontend (Vercel)

  1. Push your code to GitHub
  2. Go to Vercel and sign in
  3. Click "New Project" and import your GitHub repository
  4. Vercel will auto-detect the configuration from vercel.json
  5. Add environment variable:
    • VITE_API_BASE: Your backend API URL (e.g., https://your-backend.railway.app/api)
  6. Deploy!

Backend (Railway/Render)

Option 1: Railway

  1. Go to Railway
  2. Create new project from GitHub repo
  3. Select the backend directory
  4. Add environment variables:
    • GROQ_API_KEY: Your Groq API key
    • SECRET_KEY: Django secret key
    • DEBUG: Set to False for production
  5. Railway will auto-deploy

Option 2: Render

  1. Go to Render
  2. Create new Web Service
  3. Connect your GitHub repository
  4. Set root directory to backend
  5. Add environment variables
  6. Deploy

Important: After deploying backend, update the VITE_API_BASE environment variable in Vercel with your backend URL.

License

MIT

About

project link

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published