Skip to content

TaeJoongYoon/ECG_Classification

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ECG Classification

This project is machine learning algorithm to classify/detect arrhythmia.

I use DNNClassifier in tensorflow.

Arrhythmia Type List

  • N = 'N', 'L', 'R', 'e', 'j'

  • SVEB = 'A', 'a', 'J', 'S'

  • VEB = 'V', 'E'

  • F = 'F'

  • Q = '/', 'f'

Arrhythmia Annotation

  • N = Normal beat

  • L = Left bundle branch block beat

  • R = Right bundle branch block beat

  • e = Atrial escape beat

  • j = Nodal (junctional) escape beat

  • A = Atrial premature beat

  • a = Aberrated atrial premature beat

  • J = Nodal (junctional) premature beat

  • S = Supraventricular premature or ectopic beat (atrial or nodal)

  • V = Premature ventricular contraction

  • E = Ventricular escape beat

  • F = Fusion of ventricular and normal beat

  • / = Paced beat

  • f = Fusion of paced and normal beat

The Number of Each Arrhythmia Type

  • N = 10001

  • L = 8075

  • R = 7259

  • e = 16

  • j = 229

  • A = 2546

  • a = 150

  • J = 83

  • S = 2

  • V = 7130

  • E = 106

  • F = 803

  • / = 7028

  • f = 982

I take types(N, L, R, A, V, /) because quantity of others are not suitable

Environment


  1. python 3.5.2
  2. tensorflow-gpu 1.10.0
  3. intel i7-7700K
  4. GeForce GTX 1080 x 2

Usage


  1. Run ECG_Classification.ipynb
  2. That's all

Result


Result

About

ECG Classification with Tensorflow

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published