This project is machine learning algorithm to classify/detect arrhythmia.
I use DNNClassifier in tensorflow.
-
N = 'N', 'L', 'R', 'e', 'j'
-
SVEB = 'A', 'a', 'J', 'S'
-
VEB = 'V', 'E'
-
F = 'F'
-
Q = '/', 'f'
-
N = Normal beat
-
L = Left bundle branch block beat
-
R = Right bundle branch block beat
-
e = Atrial escape beat
-
j = Nodal (junctional) escape beat
-
A = Atrial premature beat
-
a = Aberrated atrial premature beat
-
J = Nodal (junctional) premature beat
-
S = Supraventricular premature or ectopic beat (atrial or nodal)
-
V = Premature ventricular contraction
-
E = Ventricular escape beat
-
F = Fusion of ventricular and normal beat
-
/ = Paced beat
-
f = Fusion of paced and normal beat
-
N = 10001
-
L = 8075
-
R = 7259
-
e = 16
-
j = 229
-
A = 2546
-
a = 150
-
J = 83
-
S = 2
-
V = 7130
-
E = 106
-
F = 803
-
/ = 7028
-
f = 982
I take types(N, L, R, A, V, /) because quantity of others are not suitable
- python 3.5.2
- tensorflow-gpu 1.10.0
- intel i7-7700K
- GeForce GTX 1080 x 2
- Run ECG_Classification.ipynb
- That's all