A specialized Python framework for multi-method time series correlation analysis with automatic method optimization.
TRACES automatically analyzes relationships between time series data using multiple correlation methods (Pearson, Spearman, Kendall, CCF) and determines the most appropriate method(s) for each pair.
- Automatic detection of relationship types (linear, non-linear, lagged, complex)
- Handles hierarchical data structures (parent-child relationships)
- Comprehensive visualization suite
- Multi-method correlation analysis
- Statistical significance testing
- Python 3.8+
- pandas
- numpy
- scipy
- matplotlib
- seaborn
- Excel file (.xlsx)
- First row: Column headers (series names)
- First column: Time intervals
- Additional columns: Time series data
# Example usage
import pandas as pd
from traces import analyze_full_dataset
# Load your data
df = pd.read_excel('your_data.xlsx')
# Run analysis
results = analyze_full_dataset(df, valid_pairs)
# View results
print(results.sort_values('Abs_Max_Corr', ascending=False))