forked from osmr/imgclsmob
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
240 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,240 @@ | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
from torch.nn import init | ||
|
||
|
||
class hswish(nn.Module): | ||
def forward(self, x): | ||
out = x * F.relu6(x + 3, inplace=True) / 6 | ||
return out | ||
|
||
|
||
class hsigmoid(nn.Module): | ||
def forward(self, x): | ||
out = F.relu6(x + 3, inplace=True) / 6 | ||
return out | ||
|
||
|
||
class SeModule(nn.Module): | ||
def __init__(self, in_size, reduction=4): | ||
super(SeModule, self).__init__() | ||
self.se = nn.Sequential( | ||
nn.AdaptiveAvgPool2d(1), | ||
nn.Conv2d(in_size, in_size // reduction, kernel_size=1, stride=1, padding=0, bias=False), | ||
nn.BatchNorm2d(in_size // reduction), | ||
nn.ReLU(inplace=True), | ||
nn.Conv2d(in_size // reduction, in_size, kernel_size=1, stride=1, padding=0, bias=False), | ||
nn.BatchNorm2d(in_size), | ||
hsigmoid() | ||
) | ||
|
||
def forward(self, x): | ||
return x * self.se(x) | ||
|
||
|
||
class Block(nn.Module): | ||
'''expand + depthwise + pointwise''' | ||
def __init__(self, kernel_size, in_size, expand_size, out_size, nolinear, semodule, stride): | ||
super(Block, self).__init__() | ||
self.stride = stride | ||
self.se = semodule | ||
|
||
self.conv1 = nn.Conv2d(in_size, expand_size, kernel_size=1, stride=1, padding=0, bias=False) | ||
self.bn1 = nn.BatchNorm2d(expand_size) | ||
self.nolinear1 = nolinear | ||
self.conv2 = nn.Conv2d(expand_size, expand_size, kernel_size=kernel_size, stride=stride, padding=kernel_size//2, groups=expand_size, bias=False) | ||
self.bn2 = nn.BatchNorm2d(expand_size) | ||
self.nolinear2 = nolinear | ||
self.conv3 = nn.Conv2d(expand_size, out_size, kernel_size=1, stride=1, padding=0, bias=False) | ||
self.bn3 = nn.BatchNorm2d(out_size) | ||
|
||
self.shortcut = nn.Sequential() | ||
if stride == 1 and in_size != out_size: | ||
self.shortcut = nn.Sequential( | ||
nn.Conv2d(in_size, out_size, kernel_size=1, stride=1, padding=0, bias=False), | ||
nn.BatchNorm2d(out_size), | ||
) | ||
|
||
def forward(self, x): | ||
out = self.nolinear1(self.bn1(self.conv1(x))) | ||
out = self.nolinear2(self.bn2(self.conv2(out))) | ||
out = self.bn3(self.conv3(out)) | ||
if self.se != None: | ||
out = self.se(out) | ||
out = out + self.shortcut(x) if self.stride==1 else out | ||
return out | ||
|
||
|
||
class MobileNetV3_Large(nn.Module): | ||
def __init__(self, num_classes=1000): | ||
super(MobileNetV3_Large, self).__init__() | ||
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=2, padding=1, bias=False) | ||
self.bn1 = nn.BatchNorm2d(16) | ||
self.hs1 = hswish() | ||
|
||
self.bneck = nn.Sequential( | ||
Block(3, 16, 16, 16, nn.ReLU(inplace=True), None, 1), | ||
Block(3, 16, 64, 24, nn.ReLU(inplace=True), None, 2), | ||
Block(3, 24, 72, 24, nn.ReLU(inplace=True), None, 1), | ||
Block(5, 24, 72, 40, nn.ReLU(inplace=True), SeModule(40), 2), | ||
Block(5, 40, 120, 40, nn.ReLU(inplace=True), SeModule(40), 1), | ||
Block(5, 40, 120, 40, nn.ReLU(inplace=True), SeModule(40), 1), | ||
Block(3, 40, 240, 80, hswish(), None, 2), | ||
Block(3, 80, 200, 80, hswish(), None, 1), | ||
Block(3, 80, 184, 80, hswish(), None, 1), | ||
Block(3, 80, 184, 80, hswish(), None, 1), | ||
Block(3, 80, 480, 112, hswish(), SeModule(112), 1), | ||
Block(3, 112, 672, 112, hswish(), SeModule(112), 1), | ||
Block(5, 112, 672, 160, hswish(), SeModule(160), 1), | ||
Block(5, 160, 672, 160, hswish(), SeModule(160), 2), | ||
Block(5, 160, 960, 160, hswish(), SeModule(160), 1), | ||
) | ||
|
||
|
||
self.conv2 = nn.Conv2d(160, 960, kernel_size=1, stride=1, padding=0, bias=False) | ||
self.bn2 = nn.BatchNorm2d(960) | ||
self.hs2 = hswish() | ||
self.linear3 = nn.Linear(960, 1280) | ||
self.bn3 = nn.BatchNorm1d(1280) | ||
self.hs3 = hswish() | ||
self.linear4 = nn.Linear(1280, num_classes) | ||
self.init_params() | ||
|
||
def init_params(self): | ||
for m in self.modules(): | ||
if isinstance(m, nn.Conv2d): | ||
init.kaiming_normal_(m.weight, mode='fan_out') | ||
if m.bias is not None: | ||
init.constant_(m.bias, 0) | ||
elif isinstance(m, nn.BatchNorm2d): | ||
init.constant_(m.weight, 1) | ||
init.constant_(m.bias, 0) | ||
elif isinstance(m, nn.Linear): | ||
init.normal_(m.weight, std=0.001) | ||
if m.bias is not None: | ||
init.constant_(m.bias, 0) | ||
|
||
def forward(self, x): | ||
out = self.hs1(self.bn1(self.conv1(x))) | ||
out = self.bneck(out) | ||
out = self.hs2(self.bn2(self.conv2(out))) | ||
out = F.avg_pool2d(out, 7) | ||
out = out.view(out.size(0), -1) | ||
out = self.hs3(self.bn3(self.linear3(out))) | ||
out = self.linear4(out) | ||
return out | ||
|
||
|
||
class MobileNetV3_Small(nn.Module): | ||
def __init__(self, num_classes=1000): | ||
super(MobileNetV3_Small, self).__init__() | ||
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=2, padding=1, bias=False) | ||
self.bn1 = nn.BatchNorm2d(16) | ||
self.hs1 = hswish() | ||
|
||
self.bneck = nn.Sequential( | ||
Block(3, 16, 16, 16, nn.ReLU(inplace=True), SeModule(16), 2), | ||
Block(3, 16, 72, 24, nn.ReLU(inplace=True), None, 2), | ||
Block(3, 24, 88, 24, nn.ReLU(inplace=True), None, 1), | ||
Block(5, 24, 96, 40, hswish(), SeModule(40), 2), | ||
Block(5, 40, 240, 40, hswish(), SeModule(40), 1), | ||
Block(5, 40, 240, 40, hswish(), SeModule(40), 1), | ||
Block(5, 40, 120, 48, hswish(), SeModule(48), 1), | ||
Block(5, 48, 144, 48, hswish(), SeModule(48), 1), | ||
Block(5, 48, 288, 96, hswish(), SeModule(96), 2), | ||
Block(5, 96, 576, 96, hswish(), SeModule(96), 1), | ||
Block(5, 96, 576, 96, hswish(), SeModule(96), 1), | ||
) | ||
|
||
|
||
self.conv2 = nn.Conv2d(96, 576, kernel_size=1, stride=1, padding=0, bias=False) | ||
self.bn2 = nn.BatchNorm2d(576) | ||
self.hs2 = hswish() | ||
self.linear3 = nn.Linear(576, 1280) | ||
self.bn3 = nn.BatchNorm1d(1280) | ||
self.hs3 = hswish() | ||
self.linear4 = nn.Linear(1280, num_classes) | ||
self.init_params() | ||
|
||
def init_params(self): | ||
for m in self.modules(): | ||
if isinstance(m, nn.Conv2d): | ||
init.kaiming_normal_(m.weight, mode='fan_out') | ||
if m.bias is not None: | ||
init.constant_(m.bias, 0) | ||
elif isinstance(m, nn.BatchNorm2d): | ||
init.constant_(m.weight, 1) | ||
init.constant_(m.bias, 0) | ||
elif isinstance(m, nn.Linear): | ||
init.normal_(m.weight, std=0.001) | ||
if m.bias is not None: | ||
init.constant_(m.bias, 0) | ||
|
||
def forward(self, x): | ||
out = self.hs1(self.bn1(self.conv1(x))) | ||
out = self.bneck(out) | ||
out = self.hs2(self.bn2(self.conv2(out))) | ||
out = F.avg_pool2d(out, 7) | ||
out = out.view(out.size(0), -1) | ||
out = self.hs3(self.bn3(self.linear3(out))) | ||
out = self.linear4(out) | ||
return out | ||
|
||
|
||
def oth_mobilenet_large(pretrained=False, **kwargs): | ||
return MobileNetV3_Large(**kwargs) | ||
|
||
|
||
def oth_mobilenet_small(pretrained=False, **kwargs): | ||
return MobileNetV3_Small(**kwargs) | ||
|
||
|
||
def _calc_width(net): | ||
import numpy as np | ||
net_params = filter(lambda p: p.requires_grad, net.parameters()) | ||
weight_count = 0 | ||
for param in net_params: | ||
weight_count += np.prod(param.size()) | ||
return weight_count | ||
|
||
|
||
def _test(): | ||
import torch | ||
from torch.autograd import Variable | ||
|
||
pretrained = False | ||
|
||
models = [ | ||
oth_mobilenet_large, | ||
oth_mobilenet_small, | ||
] | ||
|
||
for model in models: | ||
|
||
net = model(pretrained=pretrained) | ||
|
||
# net.train() | ||
net.eval() | ||
weight_count = _calc_width(net) | ||
print("m={}, {}".format(model.__name__, weight_count)) | ||
assert (model != oth_mobilenet_large or weight_count == 3955916) | ||
assert (model != oth_mobilenet_small or weight_count == 2509748) | ||
|
||
x = Variable(torch.randn(1, 3, 224, 224)) | ||
y = net(x) | ||
y.sum().backward() | ||
assert (tuple(y.size()) == (1, 1000)) | ||
|
||
|
||
if __name__ == "__main__": | ||
_test() | ||
|
||
|
||
|
||
# def test(): | ||
# net = MobileNetV3_Small() | ||
# x = torch.randn(2,3,224,224) | ||
# y = net(x) | ||
# print(y.size()) | ||
# | ||
# # test() |