Skip to content

Commit

Permalink
Update info about NTS-Net model for CUB
Browse files Browse the repository at this point in the history
  • Loading branch information
osmr committed May 28, 2019
1 parent 0bf343c commit 0d21eeb
Show file tree
Hide file tree
Showing 10 changed files with 57 additions and 29 deletions.
15 changes: 8 additions & 7 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -23,11 +23,11 @@ For each supported framework, there is a PIP-package containing pure models with

Currently, models are mostly implemented on Gluon and then ported to other frameworks. Some models are pretrained on
[ImageNet-1K](http://www.image-net.org), [CIFAR-10/100](https://www.cs.toronto.edu/~kriz/cifar.html),
[SVHN](http://ufldl.stanford.edu/housenumbers), [Pascal VOC2012](http://host.robots.ox.ac.uk/pascal/VOC/voc2012),
[ADE20K](http://groups.csail.mit.edu/vision/datasets/ADE20K), [Cityscapes](https://www.cityscapes-dataset.com),
and [COCO](http://cocodataset.org) datasets. All pretrained weights are loaded automatically during use.
See examples of such automatic loading of weights in the corresponding sections of the documentation dedicated to a
particular package:
[SVHN](http://ufldl.stanford.edu/housenumbers), [CUB-200-2011](http://www.vision.caltech.edu/visipedia/CUB-200-2011.html),
[Pascal VOC2012](http://host.robots.ox.ac.uk/pascal/VOC/voc2012), [ADE20K](http://groups.csail.mit.edu/vision/datasets/ADE20K),
[Cityscapes](https://www.cityscapes-dataset.com), and [COCO](http://cocodataset.org) datasets. All pretrained weights
are loaded automatically during use. See examples of such automatic loading of weights in the corresponding sections of
the documentation dedicated to a particular package:
- [Gluon models](gluon/README.md),
- [PyTorch models](pytorch/README.md),
- [Chainer models](chainer_/README.md),
Expand All @@ -46,8 +46,8 @@ pip install -r requirements.txt

Some remarks:
- `Repo` is an author repository, if it exists.
- `A`, `B`, `C`, and `D` means the implementation of a model for ImageNet-1K, CIFAR-10, CIFAR-100, and SVHN, respectively.
- `A+`, `B+`, `C+`, and `D+` means having a pre-trained model for corresponding datasets.
- `A`, `B`, `C`, `D`, and `E` means the implementation of a model for ImageNet-1K, CIFAR-10, CIFAR-100, SVHN, and CUB-200-2011, respectively.
- `A+`, `B+`, `C+`, `D+`, and `E+` means having a pre-trained model for corresponding datasets.

| Model | [Gluon](gluon/README.md) | [PyTorch](pytorch/README.md) | [Chainer](chainer_/README.md) | [Keras](keras_/README.md) | [TensorFlow](tensorflow_/README.md) | Paper | Repo | Year |
| --- | --- | --- | --- | --- | --- | --- | --- | --- |
Expand Down Expand Up @@ -129,6 +129,7 @@ Some remarks:
| Shake-Shake-ResNet | B+C+D+ | B+C+D+ | B+C+D+ | - | - | [link](https://arxiv.org/abs/1705.07485) | [link](https://github.com/xgastaldi/shake-shake) | 2017 |
| ShakeDrop-ResNet | BCD | BCD | BCD | - | - | [link](https://arxiv.org/abs/1802.02375) | - | 2018 |
| FractalNet | BC | BC | - | - | - | [link](https://arxiv.org/abs/1605.07648) | [link](https://github.com/gustavla/fractalnet) | 2016 |
| NTS-Net | E+ | E+ | E+ | - | - | [link](https://arxiv.org/abs/1809.00287) | [link](https://github.com/yangze0930/NTS-Net) | 2018 |

## Table of implemented segmentation models

Expand Down
20 changes: 14 additions & 6 deletions chainer_/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,11 +5,11 @@

This is a collection of image classification and segmentation models. Many of them are pretrained on
[ImageNet-1K](http://www.image-net.org), [CIFAR-10/100](https://www.cs.toronto.edu/~kriz/cifar.html),
[SVHN](http://ufldl.stanford.edu/housenumbers), [Pascal VOC2012](http://host.robots.ox.ac.uk/pascal/VOC/voc2012),
[ADE20K](http://groups.csail.mit.edu/vision/datasets/ADE20K), [Cityscapes](https://www.cityscapes-dataset.com),
and [COCO](http://cocodataset.org) datasets and loaded automatically during use. All pretrained models
require the same ordinary normalization. Scripts for training/evaluating/converting models are in the
[`imgclsmob`](https://github.com/osmr/imgclsmob) repo.
[SVHN](http://ufldl.stanford.edu/housenumbers), [CUB-200-2011](http://www.vision.caltech.edu/visipedia/CUB-200-2011.html),
[Pascal VOC2012](http://host.robots.ox.ac.uk/pascal/VOC/voc2012), [ADE20K](http://groups.csail.mit.edu/vision/datasets/ADE20K),
[Cityscapes](https://www.cityscapes-dataset.com), and [COCO](http://cocodataset.org) datasets and loaded automatically
during use. All pretrained models require the same ordinary normalization. Scripts for training/evaluating/converting
models are in the [`imgclsmob`](https://github.com/osmr/imgclsmob) repo.

## List of implemented models

Expand Down Expand Up @@ -71,6 +71,7 @@ require the same ordinary normalization. Scripts for training/evaluating/convert
- ResDrop-ResNet (['Deep Networks with Stochastic Depth'](https://arxiv.org/abs/1603.09382))
- Shake-Shake-ResNet (['Shake-Shake regularization'](https://arxiv.org/abs/1705.07485))
- ShakeDrop-ResNet (['ShakeDrop Regularization for Deep Residual Learning'](https://arxiv.org/abs/1802.02375))
- NTS-Net (['Learning to Navigate for Fine-grained Classification'](https://arxiv.org/abs/1809.00287))
- PSPNet (['Pyramid Scene Parsing Network'](https://arxiv.org/abs/1612.01105))
- DeepLabv3 (['Rethinking Atrous Convolution for Semantic Image Segmentation'](https://arxiv.org/abs/1706.05587))
- FCN-8s (['Fully Convolutional Networks for Semantic Segmentation'](https://arxiv.org/abs/1411.4038))
Expand Down Expand Up @@ -415,6 +416,12 @@ Some remarks:
| Shake-Shake-ResNet-20-2x16d | 3.17 | 541,082 | 81.78M | Converted from GL model ([log](https://github.com/osmr/imgclsmob/releases/download/v0.0.295/shakeshakeresnet20_2x16d_svhn-0317-261fd59f.npz.log)) |
| Shake-Shake-ResNet-26-2x32d | 2.62 | 2,923,162 | 428.89M | Converted from GL model ([log](https://github.com/osmr/imgclsmob/releases/download/v0.0.295/shakeshakeresnet26_2x32d_svhn-0262-844e1f6d.npz.log)) |

### CUB-200-2011

| Model | Error, % | Params | FLOPs/2 | Remarks |
| --- | ---: | ---: | ---: | --- |
| NTS-Net | 12.86 | 28,623,333 | 33,361.79M | From [yangze0930/NTS-Net] ([log](https://github.com/osmr/imgclsmob/releases/download/v0.0.334/ntsnet_cub-1286-4d759524.npz.log)) |

### Pascal VOC20102

| Model | Extractor | Pix.Acc.,% | mIoU,% | Params | FLOPs/2 | Remarks |
Expand Down Expand Up @@ -471,4 +478,5 @@ Some remarks:
[sacmehta/ESPNetv2]: https://github.com/sacmehta/ESPNetv2
[jhjacobsen/pytorch-i-revnet]: https://github.com/jhjacobsen/pytorch-i-revnet
[wielandbrendel/bag...models]: https://github.com/wielandbrendel/bag-of-local-features-models
[MIT-HAN-LAB/ProxylessNAS]: https://github.com/MIT-HAN-LAB/ProxylessNAS
[MIT-HAN-LAB/ProxylessNAS]: https://github.com/MIT-HAN-LAB/ProxylessNAS
[yangze0930/NTS-Net]: https://github.com/yangze0930/NTS-Net
2 changes: 1 addition & 1 deletion chainer_/chainercv2/model_provider.py
Original file line number Diff line number Diff line change
Expand Up @@ -569,7 +569,7 @@
'octresnet10_ad2': octresnet10_ad2,
'octresnet50b_ad2': octresnet50b_ad2,

'ntsnet': ntsnet_cub,
'ntsnet_cub': ntsnet_cub,
}


Expand Down
1 change: 1 addition & 0 deletions chainer_/chainercv2/models/model_store.py
Original file line number Diff line number Diff line change
Expand Up @@ -302,6 +302,7 @@
('shakeshakeresnet26_2x32d_cifar10', '0317', '5422fce187dff99fa8f4678274a8dd1519e23e27', 'v0.0.217'),
('shakeshakeresnet26_2x32d_cifar100', '1880', '750a574e738cf53079b6965410e07fb3abef82fd', 'v0.0.222'),
('shakeshakeresnet26_2x32d_svhn', '0262', '844e1f6d067b830087b9456617159a77137138f7', 'v0.0.295'),
('ntsnet_cub', '1286', '4d7595248f0fb042ef06c657d73bd0a2f3fc4f0d', 'v0.0.334'),
('pspnet_resnetd101b_voc', '7626', 'f90c0db9892ec6892623a774ba21000f7cc3995f', 'v0.0.297'),
('pspnet_resnetd50b_ade20k', '2746', '7b7ce5680fdfab567222ced11a2430cf1a452116', 'v0.0.297'),
('pspnet_resnetd101b_ade20k', '3286', 'c5e619c41740751865f662b539abbad5dd9be42b', 'v0.0.297'),
Expand Down
22 changes: 15 additions & 7 deletions gluon/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,11 +5,11 @@

This is a collection of image classification and segmentation models. Many of them are pretrained on
[ImageNet-1K](http://www.image-net.org), [CIFAR-10/100](https://www.cs.toronto.edu/~kriz/cifar.html),
[SVHN](http://ufldl.stanford.edu/housenumbers), [Pascal VOC2012](http://host.robots.ox.ac.uk/pascal/VOC/voc2012),
[ADE20K](http://groups.csail.mit.edu/vision/datasets/ADE20K), [Cityscapes](https://www.cityscapes-dataset.com),
and [COCO](http://cocodataset.org) datasets and loaded automatically during use. All pretrained models
require the same ordinary normalization. Scripts for training/evaluating/converting models are in the
[`imgclsmob`](https://github.com/osmr/imgclsmob) repo.
[SVHN](http://ufldl.stanford.edu/housenumbers), [CUB-200-2011](http://www.vision.caltech.edu/visipedia/CUB-200-2011.html),
[Pascal VOC2012](http://host.robots.ox.ac.uk/pascal/VOC/voc2012), [ADE20K](http://groups.csail.mit.edu/vision/datasets/ADE20K),
[Cityscapes](https://www.cityscapes-dataset.com), and [COCO](http://cocodataset.org) datasets and loaded automatically
during use. All pretrained models require the same ordinary normalization. Scripts for training/evaluating/converting
models are in the [`imgclsmob`](https://github.com/osmr/imgclsmob) repo.

## List of implemented models

Expand Down Expand Up @@ -77,9 +77,10 @@ require the same ordinary normalization. Scripts for training/evaluating/convert
- Shake-Shake-ResNet (['Shake-Shake regularization'](https://arxiv.org/abs/1705.07485))
- ShakeDrop-ResNet (['ShakeDrop Regularization for Deep Residual Learning'](https://arxiv.org/abs/1802.02375))
- FractalNet (['FractalNet: Ultra-Deep Neural Networks without Residuals'](https://arxiv.org/abs/1605.07648))
- NTS-Net (['Learning to Navigate for Fine-grained Classification'](https://arxiv.org/abs/1809.00287))
- FCN-8s (['Fully Convolutional Networks for Semantic Segmentation'](https://arxiv.org/abs/1411.4038))
- PSPNet (['Pyramid Scene Parsing Network'](https://arxiv.org/abs/1612.01105))
- DeepLabv3 (['Rethinking Atrous Convolution for Semantic Image Segmentation'](https://arxiv.org/abs/1706.05587))
- FCN-8s (['Fully Convolutional Networks for Semantic Segmentation'](https://arxiv.org/abs/1411.4038))

## Installation

Expand Down Expand Up @@ -443,6 +444,12 @@ Some remarks:
| Shake-Shake-ResNet-20-2x16d | 3.17 | 541,082 | 81.78M | Training ([log](https://github.com/osmr/imgclsmob/releases/download/v0.0.295/shakeshakeresnet20_2x16d_svhn-0317-7a48fde5.params.log)) |
| Shake-Shake-ResNet-26-2x32d | 2.62 | 2,923,162 | 428.89M | Training ([log](https://github.com/osmr/imgclsmob/releases/download/v0.0.295/shakeshakeresnet26_2x32d_svhn-0262-f1dbb8ef.params.log)) |

### CUB-200-2011

| Model | Error, % | Params | FLOPs/2 | Remarks |
| --- | ---: | ---: | ---: | --- |
| NTS-Net | 13.26 | 28,623,333 | 33,361.39M | From [yangze0930/NTS-Net] ([log](https://github.com/osmr/imgclsmob/releases/download/v0.0.334/ntsnet_cub-1326-75ae8cdc.params.log)) |

### Pascal VOC20102

| Model | Extractor | Pix.Acc.,% | mIoU,% | Params | FLOPs/2 | Remarks |
Expand Down Expand Up @@ -501,4 +508,5 @@ Some remarks:
[sacmehta/ESPNetv2]: https://github.com/sacmehta/ESPNetv2
[jhjacobsen/pytorch-i-revnet]: https://github.com/jhjacobsen/pytorch-i-revnet
[wielandbrendel/bag...models]: https://github.com/wielandbrendel/bag-of-local-features-models
[MIT-HAN-LAB/ProxylessNAS]: https://github.com/MIT-HAN-LAB/ProxylessNAS
[MIT-HAN-LAB/ProxylessNAS]: https://github.com/MIT-HAN-LAB/ProxylessNAS
[yangze0930/NTS-Net]: https://github.com/yangze0930/NTS-Net
2 changes: 1 addition & 1 deletion gluon/gluoncv2/model_provider.py
Original file line number Diff line number Diff line change
Expand Up @@ -628,7 +628,7 @@
'res2net50_w14_s8': res2net50_w14_s8,
'res2net50_w26_s8': res2net50_w26_s8,

'ntsnet': ntsnet_cub,
'ntsnet_cub': ntsnet_cub,
}


Expand Down
1 change: 1 addition & 0 deletions gluon/gluoncv2/models/model_store.py
Original file line number Diff line number Diff line change
Expand Up @@ -309,6 +309,7 @@
('shakeshakeresnet26_2x32d_cifar10', '0317', '21e60e626765001aaaf4eb26f7cb8f4a69ea3dc1', 'v0.0.217'),
('shakeshakeresnet26_2x32d_cifar100', '1880', 'bd46a7418374e3b3c844b33e12b09b6a98eb4e6e', 'v0.0.222'),
('shakeshakeresnet26_2x32d_svhn', '0262', 'f1dbb8ef162d9ec56478e2579272f85ed78ad896', 'v0.0.295'),
('ntsnet_cub', '1326', '75ae8cdcf4beb1ab60c1a983c9f143baaebbdea0', 'v0.0.334'),
('pspnet_resnetd101b_voc', '8144', 'e15319bf5428637e7fc00dcd426dd458ac937b08', 'v0.0.297'),
('pspnet_resnetd50b_ade20k', '3687', 'f0dcdf734f8f32a879dec3c4e7fe61d629244030', 'v0.0.297'),
('pspnet_resnetd101b_ade20k', '3797', 'c1280aeab8daa31c0893f7551d70130c2b68214a', 'v0.0.297'),
Expand Down
20 changes: 14 additions & 6 deletions pytorch/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,11 +5,11 @@

This is a collection of image classification and segmentation models. Many of them are pretrained on
[ImageNet-1K](http://www.image-net.org), [CIFAR-10/100](https://www.cs.toronto.edu/~kriz/cifar.html),
[SVHN](http://ufldl.stanford.edu/housenumbers), [Pascal VOC2012](http://host.robots.ox.ac.uk/pascal/VOC/voc2012),
[ADE20K](http://groups.csail.mit.edu/vision/datasets/ADE20K), [Cityscapes](https://www.cityscapes-dataset.com),
and [COCO](http://cocodataset.org) datasets and loaded automatically during use. All pretrained models
require the same ordinary normalization. Scripts for training/evaluating/converting models are in the
[`imgclsmob`](https://github.com/osmr/imgclsmob) repo.
[SVHN](http://ufldl.stanford.edu/housenumbers), [CUB-200-2011](http://www.vision.caltech.edu/visipedia/CUB-200-2011.html),
[Pascal VOC2012](http://host.robots.ox.ac.uk/pascal/VOC/voc2012), [ADE20K](http://groups.csail.mit.edu/vision/datasets/ADE20K),
[Cityscapes](https://www.cityscapes-dataset.com), and [COCO](http://cocodataset.org) datasets and loaded automatically
during use. All pretrained models require the same ordinary normalization. Scripts for training/evaluating/converting
models are in the [`imgclsmob`](https://github.com/osmr/imgclsmob) repo.

## List of implemented models

Expand Down Expand Up @@ -76,6 +76,7 @@ require the same ordinary normalization. Scripts for training/evaluating/convert
- Shake-Shake-ResNet (['Shake-Shake regularization'](https://arxiv.org/abs/1705.07485))
- ShakeDrop-ResNet (['ShakeDrop Regularization for Deep Residual Learning'](https://arxiv.org/abs/1802.02375))
- FractalNet (['FractalNet: Ultra-Deep Neural Networks without Residuals'](https://arxiv.org/abs/1605.07648))
- NTS-Net (['Learning to Navigate for Fine-grained Classification'](https://arxiv.org/abs/1809.00287))
- PSPNet (['Pyramid Scene Parsing Network'](https://arxiv.org/abs/1612.01105))
- DeepLabv3 (['Rethinking Atrous Convolution for Semantic Image Segmentation'](https://arxiv.org/abs/1706.05587))
- FCN-8s (['Fully Convolutional Networks for Semantic Segmentation'](https://arxiv.org/abs/1411.4038))
Expand Down Expand Up @@ -430,6 +431,12 @@ OpenCV `Resize` transformation instead of PIL one quality evaluation results wil
| Shake-Shake-ResNet-20-2x16d | 3.17 | 541,082 | 81.78M | Converted from GL model ([log](https://github.com/osmr/imgclsmob/releases/download/v0.0.295/shakeshakeresnet20_2x16d_svhn-0317-a693ec24.pth.log)) |
| Shake-Shake-ResNet-26-2x32d | 2.62 | 2,923,162 | 428.89M | Converted from GL model ([log](https://github.com/osmr/imgclsmob/releases/download/v0.0.295/shakeshakeresnet26_2x32d_svhn-0262-c1b8099e.pth.log)) |

### CUB-200-2011

| Model | Error, % | Params | FLOPs/2 | Remarks |
| --- | ---: | ---: | ---: | --- |
| NTS-Net | 12.77 | 28,623,333 | 33,361.79M | From [yangze0930/NTS-Net] ([log](https://github.com/osmr/imgclsmob/releases/download/v0.0.334/ntsnet_cub-1277-f6f330ab.pth.log)) |

### Pascal VOC20102

| Model | Extractor | Pix.Acc.,% | mIoU,% | Params | FLOPs/2 | Remarks |
Expand Down Expand Up @@ -488,4 +495,5 @@ OpenCV `Resize` transformation instead of PIL one quality evaluation results wil
[sacmehta/ESPNetv2]: https://github.com/sacmehta/ESPNetv2
[jhjacobsen/pytorch-i-revnet]: https://github.com/jhjacobsen/pytorch-i-revnet
[wielandbrendel/bag...models]: https://github.com/wielandbrendel/bag-of-local-features-models
[MIT-HAN-LAB/ProxylessNAS]: https://github.com/MIT-HAN-LAB/ProxylessNAS
[MIT-HAN-LAB/ProxylessNAS]: https://github.com/MIT-HAN-LAB/ProxylessNAS
[yangze0930/NTS-Net]: https://github.com/yangze0930/NTS-Net
2 changes: 1 addition & 1 deletion pytorch/pytorchcv/model_provider.py
Original file line number Diff line number Diff line change
Expand Up @@ -616,7 +616,7 @@
'octresnet50b_ad2': octresnet50b_ad2,

'oth_ntsnet': oth_ntsnet,
'ntsnet': ntsnet_cub,
'ntsnet_cub': ntsnet_cub,
}


Expand Down
1 change: 1 addition & 0 deletions pytorch/pytorchcv/models/model_store.py
Original file line number Diff line number Diff line change
Expand Up @@ -308,6 +308,7 @@
('shakeshakeresnet26_2x32d_cifar10', '0317', 'ecd1f8337cc90b5378b4217fb2591f2ed0f02bdf', 'v0.0.217'),
('shakeshakeresnet26_2x32d_cifar100', '1880', 'b47e371f60c9fed9eaac960568783fb6f83a362f', 'v0.0.222'),
('shakeshakeresnet26_2x32d_svhn', '0262', 'c1b8099ece97e17ce85213e4ecc6e50a064050cf', 'v0.0.295'),
('ntsnet_cub', '1277', 'f6f330abfabcc2ea17a8d4b8977a6ea322ddf532', 'v0.0.334'),
('pspnet_resnetd101b_voc', '8144', 'c22f021948461a7b7ab1ef1265a7948762770c83', 'v0.0.297'),
('pspnet_resnetd50b_ade20k', '3687', '13f22137d7dd06c6de2ffc47e6ed33403d3dd2cf', 'v0.0.297'),
('pspnet_resnetd101b_ade20k', '3797', '115d62bf66477221b83337208aefe0f2f0266da2', 'v0.0.297'),
Expand Down

0 comments on commit 0d21eeb

Please sign in to comment.