Skip to content

SulthanAbiyyu/ImageAutoLabeling

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Image Auto Labeling

Background

ImageAutoLabeling is effective for tackling random image dataset-related tasks. For example, we have a lot of random images and want to take advantage of the dataset for training another model. Instead of manually selecting the images needed, we can utilize ImageAutoLabeling.

The intuition is to immitate how human think if human have to do similiar task. When human look to a random image, human will unconsciously describing the image. Then, human will be decide what will the image classified as by a certain subjective threshold.

To describe the image, we use captioning model. Then, pick the wanted word for label via NER or keyword.

Evaluation Results

The amount of images used for evaluation is considerably low due to the expensive computational cost.

Keywords based model

dataset size time accuracy
Cat 🐱 37 images 14.83 s 94.6 %
Dog 🐶 39 images 10.83 s 94.87 %

NER based model

dataset size time accuracy
Cat 🐱 37 images 27.08 s 78.37 %
Dog 🐶 39 images 23.33 s 84.61 %

For cases that we already know what image that we need, keyword based model have better accuracy and faster than NER based model. But NER model have a lot of potential cases that we might need. For example if we need to group similiar image in random image dataset.

Limitations

Our biggest limitation is the expensive computational cost. This limits our chance to evaluate this method further. Than, if we use NER based model, it will depends on how the captioning model construct the sentence. Because basically NER model is parsing the token dependancy and looking for ROOT.

About

Using captioning model + NER / keyword

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published