Skip to content

SuLab/KnowledgeGraphEmbedding

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

42 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Drug Repuprosing using Consilience of Knowledge Graph Completion Methods

This repository is a fork of Sun et. al implementation of four knowledge graph embedding models. Here we apply the aforementioned algorithms to a biomedical knowledge graph called MIND (MechRepoNet with DrugCentral indications). We report the results of our analysis in this preprint.

Modifications to the original repository

  • Added code to output raw embeddings in order to extract predictions. This can be seen with the --do_predict flag in codes/run.py.
  • Added Notebooks folder that encapsulates analysis done on the MIND dataset.
  • Added methods, Notebooks/score_utils.py, to process and translate raw embeddings into human readable entities and relations.

Usage instructions

  1. Please see the original PyTorch implementation instructions
  2. Download the MIND dataset to ./data
  3. Install requirements into python virtual environment
    # run in shell
    mamba create -f environment.yml
    mamba activate kge
    
    
  4. Train/Test
    # run in shell
    bash run.sh train <model_name> <dataset_name> <gpu_num> <folder_out_name> <batch size> <neg_sample_size> <dimensions> <gamma> <alpha> <learningrate> <test_batch_size> <double_entities_emb> <double_relation_emb> <regularization>
    
    # or in python
    # for more parameters please see codes/run.py Lines 23 - 72
    python run.py --{do_train, do_valid, do_test, do_predict} --data_path <where/data/is> --model {TransE, DistMult, ComplEx, RotatE}
    

Citation

If you use the codes, please cite the original paper by Sun et al:

@inproceedings{
 sun2018rotate,
 title={RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space},
 author={Zhiqing Sun and Zhi-Hong Deng and Jian-Yun Nie and Jian Tang},
 booktitle={International Conference on Learning Representations},
 year={2019},
 url={https://openreview.net/forum?id=HkgEQnRqYQ},
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 99.8%
  • Other 0.2%