Skip to content

Commit

Permalink
Update HW6
Browse files Browse the repository at this point in the history
  • Loading branch information
Fafa-DL committed Apr 5, 2022
1 parent 7b38789 commit 63223d3
Show file tree
Hide file tree
Showing 3 changed files with 761 additions and 2 deletions.
758 changes: 758 additions & 0 deletions 2022 ML/06 Generation/ML_HW6.ipynb

Large diffs are not rendered by default.

Binary file added 2022 ML/06 Generation/Machine Learning HW6.pdf
Binary file not shown.
5 changes: 3 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,7 @@ ppt/pdf支持直链下载。
|2022/03/05|更新Lecture 3:Images input,HW3|
|2022/03/13|更新Lecture 4 Sequence as input,HW4<br>UP将2021&2022所有作业的数据资料整理打包好放在公众号【啥都会一点的研究生】|
|2022/03/18|更新Lecture 5 Sequence to sequence,HW5,相应Data放在公众号维护的网盘中|
|2022/04/05|更新Lecture 7以及HW6|

****

Expand Down Expand Up @@ -69,8 +70,8 @@ ppt/pdf支持直链下载。
|Lecture 3|[卷积神经网络CNN](https://www.bilibili.com/video/BV1Wv411h7kN?p=31)|Video:<br/>[为什么用了验证集还是过拟合](https://www.bilibili.com/video/BV1Wv411h7kN?p=32)<br/>[鱼与熊掌可以兼得的机器学习](https://www.bilibili.com/video/BV1Wv411h7kN?p=33)<br/><br/>PDF:<br/>[Validation](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2022-course-data/validation.pdf)<br/>[Why Deep](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2022-course-data/whydeep%20(v3).pdf)|[Spatial Transformer Layer](https://www.bilibili.com/video/BV1Wv411h7kN?p=34)|[Video](https://www.bilibili.com/video/BV1Wv411h7kN?p=35)<br/>[Slide](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2022-course-data/Machine%20Learning%20HW3%20-%20Image%20Classification.pdf)<br/>[Code](https://colab.research.google.com/drive/15hMu9YiYjE_6HY99UXon2vKGk2KwugWu)<br/>[Submission](https://www.kaggle.com/c/ml2022spring-hw3b)|
|Lecture 4|[自注意力机制(Self-attention)(上)](https://www.bilibili.com/video/BV1Wv411h7kN?p=41)<br/>[自注意力机制(Self-attention)(下)](https://www.bilibili.com/video/BV1Wv411h7kN?p=42)|Video:<br/>[None]<br/><br/>PDF:<br/>[None]|[RNN(part 1)](https://www.bilibili.com/video/BV1Wv411h7kN?p=40)<br/>[RNN(part 2)](https://www.bilibili.com/video/BV1Wv411h7kN?p=41)<br/>[GNN(part 1)](https://www.bilibili.com/video/BV1Wv411h7kN?p=42)<br/>[GNN(part 2)](https://www.bilibili.com/video/BV1Wv411h7kN?p=43)|[Video](https://www.bilibili.com/video/BV1Wv411h7kN?p=45)<br/>[Slide](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2022-course-data/Machine%20Learning%20HW4.pdf)<br/>[Code](https://colab.research.google.com/drive/1gC2Gojv9ov9MUQ1a1WDpVBD6FOcLZsog?usp=sharing)<br/>[Submission](https://www.kaggle.com/c/ml2022spring-hw4)|
|Lecture 5|[类神经网络训练不起来怎么办(五)批次标准化](https://www.bilibili.com/video/BV1Wv411h7kN?p=48)<br/>[Transformer(上)](https://www.bilibili.com/video/BV1Wv411h7kN?p=49)<br/>[Transformer(下)](https://www.bilibili.com/video/BV1Wv411h7kN?p=50)|Video:<br/>[各式各样神奇的自注意力机制 (Self-attention) 变型](https://www.bilibili.com/video/BV1Wv411h7kN?p=51)<br/><br/>PDF:<br/>[xformer](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2022-course-data/xformer%20(v8).pdf)|[NAT model](https://www.bilibili.com/video/BV1Wv411h7kN?p=52)<br/>[Pointer network](https://www.bilibili.com/video/BV1Wv411h7kN?p=53)|[Video](https://www.bilibili.com/video/BV1Wv411h7kN?p=54)<br/>[Slide](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2022-course-data/HW05.pdf)<br/>[Code](https://colab.research.google.com/drive/1Tlyk2vCBQ8ZCuDQcCSEWTLzr1_xYF9CL#scrollTo=Le4RFWXxjmm0)<br/>[Submission](https://ml.ee.ntu.edu.tw/hw5/)|
|Lecture 6|[GAN(一)基本概念介绍](https://www.bilibili.com/video/BV1Wv411h7kN?p=58)<br/>[GAN(二)理论介绍与WGAN](https://www.bilibili.com/video/BV1Wv411h7kN?p=59)<br/>[GAN(三)生成器效能评估与条件式生成](https://www.bilibili.com/video/BV1Wv411h7kN?p=60)<br/>[GAN(四)Cycle GAN](https://www.bilibili.com/video/BV1Wv411h7kN?p=61)|Video:<br/>[None]<br/><br/>PDF:<br/>[None]|[Theory of GAN (part 1)](https://www.bilibili.com/video/BV1Wv411h7kN?p=62)<br/>[Theory of GAN (part 2)](https://www.bilibili.com/video/BV1Wv411h7kN?p=63)<br/>[Theory of GAN (part 3)](https://www.bilibili.com/video/BV1Wv411h7kN?p=64)<br/>[Deep Generative Model (part 1)](https://www.bilibili.com/video/BV1Wv411h7kN?p=65)<br/>[Deep Generative Model (part 2)](https://www.bilibili.com/video/BV1Wv411h7kN?p=66)<br/>[FLOW-based Model](https://www.bilibili.com/video/BV1Wv411h7kN?p=67)|[Video]<br/>[Slide]<br/>[Code]<br/>|
|Lecture 7|[自监督学习(一)芝麻街与进击的巨人](https://www.bilibili.com/video/BV1Wv411h7kN?p=70)<br/>[自监督学习(二)BERT简介](https://www.bilibili.com/video/BV1Wv411h7kN?p=71)<br/>[自监督学习(三)BERT的奇闻轶事](https://www.bilibili.com/video/BV1Wv411h7kN?p=72)<br/>[自监督学习(四)GPT的野望](https://www.bilibili.com/video/BV1Wv411h7kN?p=73)|Video:<br/>[如何有效的使用自督导式模型](https://www.bilibili.com/video/BV1Wv411h7kN?p=74)<br/><br/>PDF:<br/>[Recent Advance of Self-supervied learning for NLP](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2022-course-data/PLM.pdf)|[BERT (part 1)](https://www.bilibili.com/video/BV1Wv411h7kN?p=75)<br/>[BERT (part 2)](https://www.bilibili.com/video/BV1Wv411h7kN?p=76)<br/>[BERT(part 3)](https://www.bilibili.com/video/BV1Wv411h7kN?p=77)|[Video]<br/>[Slide]<br/>[Code]<br/>|
|Lecture 6|[GAN(一)基本概念介绍](https://www.bilibili.com/video/BV1Wv411h7kN?p=58)<br/>[GAN(二)理论介绍与WGAN](https://www.bilibili.com/video/BV1Wv411h7kN?p=59)<br/>[GAN(三)生成器效能评估与条件式生成](https://www.bilibili.com/video/BV1Wv411h7kN?p=60)<br/>[GAN(四)Cycle GAN](https://www.bilibili.com/video/BV1Wv411h7kN?p=61)|Video:<br/>[None]<br/><br/>PDF:<br/>[None]|[Theory of GAN (part 1)](https://www.bilibili.com/video/BV1Wv411h7kN?p=62)<br/>[Theory of GAN (part 2)](https://www.bilibili.com/video/BV1Wv411h7kN?p=63)<br/>[Theory of GAN (part 3)](https://www.bilibili.com/video/BV1Wv411h7kN?p=64)<br/>[Deep Generative Model (part 1)](https://www.bilibili.com/video/BV1Wv411h7kN?p=65)<br/>[Deep Generative Model (part 2)](https://www.bilibili.com/video/BV1Wv411h7kN?p=66)<br/>[FLOW-based Model](https://www.bilibili.com/video/BV1Wv411h7kN?p=67)|[Video](https://www.bilibili.com/video/BV1Wv411h7kN?p=70)<br/>[Slide](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2022-course-data/Machine%20Learning%20HW6.pdf)<br/>[Code](https://colab.research.google.com/drive/10lHBPFoNhTiiPe-yZ7SwAV1wwrkGc4En?usp=sharing)<br/>|
|Lecture 7|[自监督学习(一)芝麻街与进击的巨人](https://www.bilibili.com/video/BV1Wv411h7kN?p=71)<br/>[自监督学习(二)BERT简介](https://www.bilibili.com/video/BV1Wv411h7kN?p=72)<br/>[自监督学习(三)BERT的奇闻轶事](https://www.bilibili.com/video/BV1Wv411h7kN?p=73)<br/>[自监督学习(四)GPT的野望](https://www.bilibili.com/video/BV1Wv411h7kN?p=74)|Video:<br/>[如何有效的使用自督导式模型](https://www.bilibili.com/video/BV1Wv411h7kN?p=75)<br/><br/>PDF:<br/>[Recent Advance of Self-supervied learning for NLP](https://speech.ee.ntu.edu.tw/~hylee/ml/ml2022-course-data/PLM.pdf)|[BERT (part 1)](https://www.bilibili.com/video/BV1Wv411h7kN?p=76)<br/>[BERT (part 2)](https://www.bilibili.com/video/BV1Wv411h7kN?p=77)<br/>[BERT(part 3)](https://www.bilibili.com/video/BV1Wv411h7kN?p=77)|[Video]<br/>[Slide]<br/>[Code]<br/>|

****
[![BILIBILI](https://raw.githubusercontent.com/Fafa-DL/readme-data/main/gzh.jpg)](https://space.bilibili.com/46880349)

0 comments on commit 63223d3

Please sign in to comment.