-
Notifications
You must be signed in to change notification settings - Fork 28
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
353 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,56 @@ | ||
import os | ||
import argparse | ||
import cv2 | ||
import numpy as np | ||
from ssd import SSD | ||
from sort import Sort | ||
|
||
def parse_args(): | ||
'''parse args''' | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument('--gpu_id', type=int, default=0, help='gpu id') | ||
parser.add_argument('--labelmap_file', | ||
default='/home/cvpr/caffe/data/MOT/labelmap_mot.prototxt') | ||
parser.add_argument('--model_def', | ||
default='/home/cvpr/caffe/models/MOT/SSD_512x512/deploy.prototxt') | ||
parser.add_argument('--image_resize', default=512, type=int) | ||
parser.add_argument('--model_weights', | ||
default='/home/cvpr/caffe/models/MOT/SSD_512x512/' | ||
'VGG_MOT_SSD_512x512_iter_40000.caffemodel') | ||
return parser.parse_args() | ||
|
||
args=parse_args() | ||
Detector=SSD(args.gpu_id,args.model_def, args.model_weights,args.image_resize, args.labelmap_file) | ||
mot_tracker = Sort() | ||
seqDir="/home/cvpr/xcz/MOT/data/MOT16/train/MOT16-05/img1" | ||
images=os.listdir(seqDir) | ||
images.sort(key=str.lower) | ||
colours = np.random.rand(32,3)*255 | ||
for image_name in images: | ||
image_path=os.path.join(seqDir,image_name) | ||
result = Detector.detect(image_path) | ||
im=cv2.imread(image_path) | ||
height=im.shape[0] | ||
width=im.shape[1] | ||
result=np.array(result) | ||
det=result[:,0:5] | ||
det[:,0]=det[:,0]*width | ||
det[:,1]=det[:,1]*height | ||
det[:,2]=det[:,2]*width | ||
det[:,3]=det[:,3]*height | ||
trackers = mot_tracker.update(det) | ||
for d in trackers: | ||
xmin=int(d[0]) | ||
ymin=int(d[1]) | ||
xmax=int(d[2]) | ||
ymax=int(d[3]) | ||
label=int(d[4]) | ||
print label | ||
print colours[label%32,:] | ||
cv2.rectangle(im,(xmin,ymin),(xmax,ymax),(int(colours[label%32,0]),int(colours[label%32,1]),int(colours[label%32,2])),1) | ||
cv2.imshow("dst",im) | ||
cv2.waitKey(1) | ||
|
||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,297 @@ | ||
""" | ||
SORT: A Simple, Online and Realtime Tracker | ||
Copyright (C) 2016 Alex Bewley alex@dynamicdetection.com | ||
This program is free software: you can redistribute it and/or modify | ||
it under the terms of the GNU General Public License as published by | ||
the Free Software Foundation, either version 3 of the License, or | ||
(at your option) any later version. | ||
This program is distributed in the hope that it will be useful, | ||
but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
GNU General Public License for more details. | ||
You should have received a copy of the GNU General Public License | ||
along with this program. If not, see <http://www.gnu.org/licenses/>. | ||
""" | ||
from __future__ import print_function | ||
|
||
from numba import jit | ||
import os.path | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
import matplotlib.patches as patches | ||
from skimage import io | ||
from sklearn.utils.linear_assignment_ import linear_assignment | ||
import glob | ||
import time | ||
import argparse | ||
from filterpy.kalman import KalmanFilter | ||
|
||
def iou(bb_test,bb_gt): | ||
""" | ||
Computes IUO between two bboxes in the form [x1,y1,x2,y2] | ||
""" | ||
xx1 = np.maximum(bb_test[0], bb_gt[0]) | ||
yy1 = np.maximum(bb_test[1], bb_gt[1]) | ||
xx2 = np.minimum(bb_test[2], bb_gt[2]) | ||
yy2 = np.minimum(bb_test[3], bb_gt[3]) | ||
w = np.maximum(0., xx2 - xx1) | ||
h = np.maximum(0., yy2 - yy1) | ||
wh = w * h | ||
o = wh / ((bb_test[2]-bb_test[0])*(bb_test[3]-bb_test[1]) | ||
+ (bb_gt[2]-bb_gt[0])*(bb_gt[3]-bb_gt[1]) - wh) | ||
return(o) | ||
|
||
def convert_bbox_to_z(bbox): | ||
""" | ||
Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form | ||
[x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is | ||
the aspect ratio | ||
""" | ||
w = bbox[2]-bbox[0] | ||
h = bbox[3]-bbox[1] | ||
x = bbox[0]+w/2. | ||
y = bbox[1]+h/2. | ||
s = w*h #scale is just area | ||
r = w/float(h) | ||
return np.array([x,y,s,r]).reshape((4,1)) | ||
|
||
def convert_x_to_bbox(x,score=None): | ||
""" | ||
Takes a bounding box in the centre form [x,y,s,r] and returns it in the form | ||
[x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right | ||
""" | ||
w = np.sqrt(x[2]*x[3]) | ||
h = x[2]/w | ||
if(score==None): | ||
return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.]).reshape((1,4)) | ||
else: | ||
return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.,score]).reshape((1,5)) | ||
|
||
|
||
class KalmanBoxTracker(object): | ||
""" | ||
This class represents the internel state of individual tracked objects observed as bbox. | ||
""" | ||
count = 0 | ||
def __init__(self,bbox): | ||
""" | ||
Initialises a tracker using initial bounding box. | ||
""" | ||
#define constant velocity model | ||
self.kf = KalmanFilter(dim_x=7, dim_z=4) | ||
self.kf.F = np.array([[1,0,0,0,1,0,0],[0,1,0,0,0,1,0],[0,0,1,0,0,0,1],[0,0,0,1,0,0,0], [0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]) | ||
self.kf.H = np.array([[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0]]) | ||
|
||
self.kf.R[2:,2:] *= 10. | ||
self.kf.P[4:,4:] *= 1000. #give high uncertainty to the unobservable initial velocities | ||
self.kf.P *= 10. | ||
self.kf.Q[-1,-1] *= 0.01 | ||
self.kf.Q[4:,4:] *= 0.01 | ||
|
||
self.kf.x[:4] = convert_bbox_to_z(bbox) | ||
self.time_since_update = 0 | ||
self.id = KalmanBoxTracker.count | ||
KalmanBoxTracker.count += 1 | ||
self.history = [] | ||
self.hits = 0 | ||
self.hit_streak = 0 | ||
self.age = 0 | ||
|
||
def update(self,bbox): | ||
""" | ||
Updates the state vector with observed bbox. | ||
""" | ||
self.time_since_update = 0 | ||
self.history = [] | ||
self.hits += 1 | ||
self.hit_streak += 1 | ||
self.kf.update(convert_bbox_to_z(bbox)) | ||
|
||
def predict(self): | ||
""" | ||
Advances the state vector and returns the predicted bounding box estimate. | ||
""" | ||
if((self.kf.x[6]+self.kf.x[2])<=0): | ||
self.kf.x[6] *= 0.0 | ||
self.kf.predict() | ||
self.age += 1 | ||
if(self.time_since_update>0): | ||
self.hit_streak = 0 | ||
self.time_since_update += 1 | ||
self.history.append(convert_x_to_bbox(self.kf.x)) | ||
return self.history[-1] | ||
|
||
def get_state(self): | ||
""" | ||
Returns the current bounding box estimate. | ||
""" | ||
return convert_x_to_bbox(self.kf.x) | ||
|
||
def associate_detections_to_trackers(detections,trackers,iou_threshold = 0.3): | ||
""" | ||
Assigns detections to tracked object (both represented as bounding boxes) | ||
Returns 3 lists of matches, unmatched_detections and unmatched_trackers | ||
""" | ||
if(len(trackers)==0): | ||
return np.empty((0,2),dtype=int), np.arange(len(detections)), np.empty((0,5),dtype=int) | ||
iou_matrix = np.zeros((len(detections),len(trackers)),dtype=np.float32) | ||
|
||
for d,det in enumerate(detections): | ||
for t,trk in enumerate(trackers): | ||
iou_matrix[d,t] = iou(det,trk) | ||
matched_indices = linear_assignment(-iou_matrix) | ||
|
||
unmatched_detections = [] | ||
for d,det in enumerate(detections): | ||
if(d not in matched_indices[:,0]): | ||
unmatched_detections.append(d) | ||
unmatched_trackers = [] | ||
for t,trk in enumerate(trackers): | ||
if(t not in matched_indices[:,1]): | ||
unmatched_trackers.append(t) | ||
|
||
#filter out matched with low IOU | ||
matches = [] | ||
for m in matched_indices: | ||
if(iou_matrix[m[0],m[1]]<iou_threshold): | ||
unmatched_detections.append(m[0]) | ||
unmatched_trackers.append(m[1]) | ||
else: | ||
matches.append(m.reshape(1,2)) | ||
if(len(matches)==0): | ||
matches = np.empty((0,2),dtype=int) | ||
else: | ||
matches = np.concatenate(matches,axis=0) | ||
|
||
return matches, np.array(unmatched_detections), np.array(unmatched_trackers) | ||
|
||
|
||
|
||
class Sort(object): | ||
def __init__(self,max_age=1,min_hits=3): | ||
""" | ||
Sets key parameters for SORT | ||
""" | ||
self.max_age = max_age | ||
self.min_hits = min_hits | ||
self.trackers = [] | ||
self.frame_count = 0 | ||
|
||
def update(self,dets): | ||
""" | ||
Params: | ||
dets - a numpy array of detections in the format [[x1,y1,x2,y2,score],[x1,y1,x2,y2,score],...] | ||
Requires: this method must be called once for each frame even with empty detections. | ||
Returns the a similar array, where the last column is the object ID. | ||
NOTE: The number of objects returned may differ from the number of detections provided. | ||
""" | ||
self.frame_count += 1 | ||
#get predicted locations from existing trackers. | ||
trks = np.zeros((len(self.trackers),5)) | ||
to_del = [] | ||
ret = [] | ||
for t,trk in enumerate(trks): | ||
pos = self.trackers[t].predict()[0] | ||
trk[:] = [pos[0], pos[1], pos[2], pos[3], 0] | ||
if(np.any(np.isnan(pos))): | ||
to_del.append(t) | ||
trks = np.ma.compress_rows(np.ma.masked_invalid(trks)) | ||
for t in reversed(to_del): | ||
self.trackers.pop(t) | ||
matched, unmatched_dets, unmatched_trks = associate_detections_to_trackers(dets,trks) | ||
|
||
#update matched trackers with assigned detections | ||
for t,trk in enumerate(self.trackers): | ||
if(t not in unmatched_trks): | ||
d = matched[np.where(matched[:,1]==t)[0],0] | ||
trk.update(dets[d,:][0]) | ||
|
||
#create and initialise new trackers for unmatched detections | ||
for i in unmatched_dets: | ||
trk = KalmanBoxTracker(dets[i,:]) | ||
self.trackers.append(trk) | ||
i = len(self.trackers) | ||
for trk in reversed(self.trackers): | ||
d = trk.get_state()[0] | ||
if((trk.time_since_update < 1) and (trk.hit_streak >= self.min_hits or self.frame_count <= self.min_hits)): | ||
ret.append(np.concatenate((d,[trk.id+1])).reshape(1,-1)) # +1 as MOT benchmark requires positive | ||
i -= 1 | ||
#remove dead tracklet | ||
if(trk.time_since_update > self.max_age): | ||
self.trackers.pop(i) | ||
if(len(ret)>0): | ||
return np.concatenate(ret) | ||
return np.empty((0,5)) | ||
|
||
def parse_args(): | ||
"""Parse input arguments.""" | ||
parser = argparse.ArgumentParser(description='SORT demo') | ||
parser.add_argument('--display', dest='display', help='Display online tracker output (slow) [False]',action='store_true') | ||
args = parser.parse_args() | ||
return args | ||
|
||
if __name__ == '__main__': | ||
# all train | ||
sequences = ['PETS09-S2L1','TUD-Campus','TUD-Stadtmitte','ETH-Bahnhof','ETH-Sunnyday','ETH-Pedcross2','KITTI-13','KITTI-17','ADL-Rundle-6','ADL-Rundle-8','Venice-2'] | ||
args = parse_args() | ||
display = args.display | ||
phase = 'train' | ||
total_time = 0.0 | ||
total_frames = 0 | ||
colours = np.random.rand(32,3) #used only for display | ||
if(display): | ||
if not os.path.exists('mot_benchmark'): | ||
print('\n\tERROR: mot_benchmark link not found!\n\n Create a symbolic link to the MOT benchmark\n (https://motchallenge.net/data/2D_MOT_2015/#download). E.g.:\n\n $ ln -s /path/to/MOT2015_challenge/2DMOT2015 mot_benchmark\n\n') | ||
exit() | ||
plt.ion() | ||
fig = plt.figure() | ||
|
||
if not os.path.exists('output'): | ||
os.makedirs('output') | ||
|
||
for seq in sequences: | ||
mot_tracker = Sort() #create instance of the SORT tracker | ||
seq_dets = np.loadtxt('data/%s/det.txt'%(seq),delimiter=',') #load detections | ||
with open('output/%s.txt'%(seq),'w') as out_file: | ||
print("Processing %s."%(seq)) | ||
for frame in range(int(seq_dets[:,0].max())): | ||
frame += 1 #detection and frame numbers begin at 1 | ||
dets = seq_dets[seq_dets[:,0]==frame,2:7] | ||
dets[:,2:4] += dets[:,0:2] #convert to [x1,y1,w,h] to [x1,y1,x2,y2] | ||
total_frames += 1 | ||
|
||
if(display): | ||
ax1 = fig.add_subplot(111, aspect='equal') | ||
fn = 'mot_benchmark/%s/%s/img1/%06d.jpg'%(phase,seq,frame) | ||
im =io.imread(fn) | ||
ax1.imshow(im) | ||
plt.title(seq+' Tracked Targets') | ||
|
||
start_time = time.time() | ||
trackers = mot_tracker.update(dets) | ||
cycle_time = time.time() - start_time | ||
total_time += cycle_time | ||
|
||
for d in trackers: | ||
print('%d,%d,%.2f,%.2f,%.2f,%.2f,1,-1,-1,-1'%(frame,d[4],d[0],d[1],d[2]-d[0],d[3]-d[1]),file=out_file) | ||
if(display): | ||
d = d.astype(np.int32) | ||
ax1.add_patch(patches.Rectangle((d[0],d[1]),d[2]-d[0],d[3]-d[1],fill=False,lw=3,ec=colours[d[4]%32,:])) | ||
ax1.set_adjustable('box-forced') | ||
|
||
if(display): | ||
fig.canvas.flush_events() | ||
plt.draw() | ||
ax1.cla() | ||
|
||
print("Total Tracking took: %.3f for %d frames or %.1f FPS"%(total_time,total_frames,total_frames/total_time)) | ||
if(display): | ||
print("Note: to get real runtime results run without the option: --display") | ||
|
||
|
||
|