forked from opencobra/cobratoolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
manual Merge branch 'rmtfleming-solvers-refined' into develop
- Loading branch information
Showing
1 changed file
with
112 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,112 @@ | ||
|
||
|
||
solvers = prepareTest('requiredSolvers',{'gurobi'}); | ||
|
||
|
||
fprintf('Checking gurobi solver ...\n') | ||
|
||
clear params | ||
params.OutputFlag = 0; | ||
|
||
tol= 1e-6; | ||
|
||
c = [3; -4]; | ||
b = [5; 0]; | ||
Q = sparse([8, 1; 1, 8]); | ||
A = sparse([1, 1; -1, 1]); | ||
|
||
% Build model | ||
qp.Q = Q; | ||
qp.obj = c; | ||
qp.A = A; | ||
qp.rhs = b; | ||
qp.lb = [0, 0]; | ||
qp.ub = [inf, inf]; | ||
qp.modelsense = 'min'; | ||
qp.sense = ['<'; '<']; | ||
|
||
% Solve | ||
result = gurobi(qp,params); | ||
|
||
% Get primal/dual values | ||
x = result.x; | ||
lam = result.pi; | ||
|
||
fprintf('%s\n','Problem qp') | ||
% Check optimality conditions | ||
disp('Check 2*Q*x + c - A''*lam = 0 (stationarity):'); | ||
disp(2*Q*x + c - A'*lam); | ||
assert(norm(2*Q*x + c - A'*lam,inf)<1e-8) | ||
|
||
disp('Check A*x - b <= 0 (primal feasibility):'); | ||
disp(A*x - b); | ||
assert(all((A*x - b)<=0)) | ||
|
||
disp('Check x >= 0 (primal feasibility):'); | ||
disp(x); | ||
assert(all(x>0)) | ||
|
||
disp('Check lam <= 0 (dual feasibility):'); | ||
disp(lam); | ||
assert(all(lam<=0)) | ||
|
||
disp('Check lam''*(A*x - b) = 0 (complementarity):'); | ||
disp(lam'*(A*x - b)) | ||
assert(norm(lam'*(A*x - b),inf)<1e-8) | ||
|
||
QPproblem2.Q = sparse([1, 0, 0; 0, 1, 0; 0, 0, 1]); | ||
QPproblem2.modelsense = 'min'; | ||
QPproblem2.obj = -1*[0, 0, 0]'; | ||
QPproblem2.A = sparse([1, -1, -1 ; 0, 0, 1]); | ||
QPproblem2.rhs = [0, 5]'; | ||
QPproblem2.lb = [0, -inf, 0]'; | ||
QPproblem2.ub = [inf, inf, inf]'; | ||
QPproblem2.sense = ['='; '=']; | ||
|
||
result = gurobi(QPproblem2,params); | ||
|
||
fprintf('%s\n%s%g\n','QPproblem2','Optimal objective is: ', result.objval) | ||
fprintf('%s\n','optimal primal is: ') | ||
disp(result.x) | ||
assert(abs(result.objval - 37.5)<tol) | ||
assert(all((result.x - [2.5;-2.5;5])<tol)) | ||
fprintf('\n') | ||
|
||
QPproblem3.Q = sparse([1, 0, 0; 0, 1, 0; 0, 0, 1]); | ||
QPproblem3.modelsense = 'min'; | ||
QPproblem3.obj = -1*[1, 1, 1]'; | ||
QPproblem3.A = sparse([1, -1, 0 ; 0, 1, -1]); | ||
QPproblem3.rhs = [0, 0]'; | ||
QPproblem3.lb = [0, 0, 0]'; | ||
QPproblem3.ub = [inf, inf, inf]'; | ||
QPproblem3.sense = ['='; '=']; | ||
|
||
result = gurobi(QPproblem3,params); | ||
|
||
fprintf('%s\n%s%g\n','QPproblem3','Optimal objective is: ', result.objval) | ||
fprintf('%s\n','optimal primal is: ') | ||
disp(result.x) | ||
assert(abs(result.objval + 0.75)<tol) | ||
assert(all((result.x - [0.5;0.5;0.5])<tol)) | ||
fprintf('\n') | ||
|
||
QPproblem4.obj = [200; 400]; | ||
QPproblem4.A = sparse([1 / 40, 1 / 60; 1 / 50, 1 / 50]); | ||
QPproblem4.b = [1; 1]; | ||
QPproblem4.lb = [0; 0]; | ||
QPproblem4.ub = [1; 1]; | ||
QPproblem4.modelsense = 'max'; | ||
QPproblem4.sense = ['<'; '<']; | ||
QPproblem4.Q = sparse(2,2); | ||
|
||
result = gurobi(QPproblem4,params); | ||
|
||
fprintf('%s\n%s%g\n','QPproblem4','Optimal objective is: ', result.objval) | ||
fprintf('%s\n','optimal primal is: ') | ||
disp(result.x) | ||
assert(abs(result.objval + 0)<tol) | ||
assert(all((result.x - [0;0])<tol)) | ||
fprintf('\n') | ||
|
||
fprintf('Done.\n') | ||
|