Official code of "MaskDroid: Robust Android Malware Detection with Masked Graph Representations" published on 39th IEEE/ACM International Conference on Automated Software Engineering (ASE '24)
MaskDroid aims to build a powerful malware detector with remarkable robustness against adversarial attacks.
Main packages: torch==2.3.1
To run effectiveness experiments:
python main.py --modeltype PreModel_v3 --batch_size 32 --lr 1e-3 --train_year all --need_pretrain --need_record --mask_rate 0.8
To run adversarial attack:
python model/attack.py --modeltype PreModel_v3 --white_box
or for blackbox attack:
python model/attack.py --modeltype PreModel_v3
To run concept drift experiment:
python main.py --modeltype PreModel_v3 --concept_drift --sh --restore_epoch 19 --train_year 2019 --test_year 2020 --batch_size 32 --lr 1e-3
Complete list of scripts are available in /scripts