Skip to content

This project is the result of my undergraduate dissertation. The localization in dynamic environment is to deploy TensorRT optimized YOLOX in the front end of ORB-SLAM3 for object detection, and then eliminate all points belonging to the human bounding box. At the same time, the semantic information is sent to the mapping module to dye the 3D po…

License

Notifications You must be signed in to change notification settings

SlamMate/CDS-SLAM-Semantic-mapping-in-dynamic-environment

Repository files navigation

CDS-SLAM-Semantic-mapping-in-dynamic-environment

1. Introdution

This project is the result of my undergraduate dissertation. The localization in a dynamic environment is to deploy TensorRT optimized YOLOX in the front end of ORB-SLAM3 for object detection and eliminate all points belonging to the human bounding box. At the same time, the semantic information is sent to the mapping module to dye the 3D point cloud. The disadvantage of this project is that in the localization module, only the points belonging to people are processed because people are dynamic most of the time. In the mapping module, we did not segment semantic objects accurately, resulting in the wrong coloring of point clouds of other objects.

The video is presented below:

China:https://www.bilibili.com/video/BV1St4y157qH?share_source=copy_web&vd_source=12d45e19826de0471391d3db9d6c9491

Other countries:https://www.youtube.com/watch?v=OxYHrIgqyJQ

2. Acknowledgements

if you use this to research you must cite this paper. The paper is based on this code

@article{10.1088/1361-6501/acd1a4,
	author={Zhang, Qi and Li, Changdi},
	title={Semantic SLAM for mobile Robots in dynamic environments Based on visual camera sensors},
	journal={Measurement Science and Technology},
	url={http://iopscience.iop.org/article/10.1088/1361-6501/acd1a4},
	year={2023}
	}

My work is based on ORBSLAM3,Crowd-SLAM,Semantic-SLAM

@article{ORBSLAM3_TRO,
  title={{ORB-SLAM3}: An Accurate Open-Source Library for Visual, Visual-Inertial 
           and Multi-Map {SLAM}},
  author={Campos, Carlos AND Elvira, Richard AND G\´omez, Juan J. AND Montiel, 
          Jos\'e M. M. AND Tard\'os, Juan D.},
  journal={IEEE Transactions on Robotics}, 
  volume={37},
  number={6},
  pages={1874-1890},
  year={2021}
 }
 @article{soaresJINT2021,
  title={Crowd-{SLAM}: Visual {SLAM} Towards Crowded Environments using Object Detection},
  author={Soares, J. C. V., Gattass, M. and Meggiolaro, M. A.},
  journal={Journal of Intelligent & Robotic Systems},
  volume={102},
  number={50},
  doi = {https://doi.org/10.1007/s10846-021-01414-1},
  year={2021}
 }
 @inbook{inbook,
 author = {Qi, Xuxiang and Yang, Shaowu and Yan, Yuejin},
 year = {2018},
 month = {10},
 pages = {012023},
 title = {Deep Learning Based Semantic Labelling of 3D Point Cloud in Visual SLAM},
 volume = {428},
 journal = {IOP Conference Series: Materials Science and Engineering},
 doi = {10.1088/1757-899X/428/1/012023}
 }

3.Prerequisites

Please refer to the compilation and operation of ORB-SLAM3:https://github.com/UZ-SLAMLab/ORB_SLAM3

About

This project is the result of my undergraduate dissertation. The localization in dynamic environment is to deploy TensorRT optimized YOLOX in the front end of ORB-SLAM3 for object detection, and then eliminate all points belonging to the human bounding box. At the same time, the semantic information is sent to the mapping module to dye the 3D po…

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages