-
Notifications
You must be signed in to change notification settings - Fork 5.4k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add code 9.6.0: prepare pikachu data
- Loading branch information
1 parent
e7179e4
commit 4ea05a5
Showing
1 changed file
with
204 additions
and
0 deletions.
There are no files selected for viewing
204 changes: 204 additions & 0 deletions
204
code/chapter09_computer-vision/9.6.0_prepare_pikachu.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,204 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# 9.6.0 准备皮卡丘数据集" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import os\n", | ||
"import json\n", | ||
"from tqdm import tqdm\n", | ||
"import numpy as np\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"from mxnet.gluon import utils as gutils # pip install mxnet\n", | ||
"from mxnet import image\n", | ||
"\n", | ||
"data_dir = '../../data/pikachu'\n", | ||
"os.makedirs(data_dir, exist_ok=True)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## 1. 下载原始数据集\n", | ||
"见http://zh.d2l.ai/chapter_computer-vision/object-detection-dataset.html" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"def _download_pikachu(data_dir):\n", | ||
" root_url = ('https://apache-mxnet.s3-accelerate.amazonaws.com/'\n", | ||
" 'gluon/dataset/pikachu/')\n", | ||
" dataset = {'train.rec': 'e6bcb6ffba1ac04ff8a9b1115e650af56ee969c8',\n", | ||
" 'train.idx': 'dcf7318b2602c06428b9988470c731621716c393',\n", | ||
" 'val.rec': 'd6c33f799b4d058e82f2cb5bd9a976f69d72d520'}\n", | ||
" for k, v in dataset.items():\n", | ||
" gutils.download(root_url + k, os.path.join(data_dir, k), sha1_hash=v)\n", | ||
"\n", | ||
"if not os.path.exists(os.path.join(data_dir, \"train.rec\")):\n", | ||
" print(\"下载原始数据集到%s...\" % data_dir)\n", | ||
" _download_pikachu(data_dir)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## 2. MXNet数据迭代器" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"def load_data_pikachu(batch_size, edge_size=256): # edge_size:输出图像的宽和高\n", | ||
" train_iter = image.ImageDetIter(\n", | ||
" path_imgrec=os.path.join(data_dir, 'train.rec'),\n", | ||
" path_imgidx=os.path.join(data_dir, 'train.idx'),\n", | ||
" batch_size=batch_size,\n", | ||
" data_shape=(3, edge_size, edge_size), # 输出图像的形状\n", | ||
"# shuffle=False, # 以随机顺序读取数据集\n", | ||
"# rand_crop=1, # 随机裁剪的概率为1\n", | ||
" min_object_covered=0.95, max_attempts=200)\n", | ||
" val_iter = image.ImageDetIter(\n", | ||
" path_imgrec=os.path.join(data_dir, 'val.rec'), batch_size=batch_size,\n", | ||
" data_shape=(3, edge_size, edge_size), shuffle=False)\n", | ||
" return train_iter, val_iter" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"((3, 256, 256), (1, 5))" | ||
] | ||
}, | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"batch_size, edge_size = 1, 256\n", | ||
"train_iter, val_iter = load_data_pikachu(batch_size, edge_size)\n", | ||
"batch = train_iter.next()\n", | ||
"batch.data[0][0].shape, batch.label[0][0].shape" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## 3. 转换成PNG图片并保存" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def process(data_iter, save_dir):\n", | ||
" \"\"\"batch size == 1\"\"\"\n", | ||
" data_iter.reset() # 从头开始\n", | ||
" all_label = dict()\n", | ||
" id = 1\n", | ||
" os.makedirs(os.path.join(save_dir, 'images'), exist_ok=True)\n", | ||
" for sample in tqdm(data_iter):\n", | ||
" x = sample.data[0][0].asnumpy().transpose((1,2,0))\n", | ||
" plt.imsave(os.path.join(save_dir, 'images', str(id) + '.png'), x / 255.0)\n", | ||
"\n", | ||
" y = sample.label[0][0][0].asnumpy()\n", | ||
"\n", | ||
" label = {}\n", | ||
" label[\"class\"] = int(y[0])\n", | ||
" label[\"loc\"] = y[1:].tolist()\n", | ||
"\n", | ||
" all_label[str(id) + '.png'] = label.copy()\n", | ||
"\n", | ||
" id += 1\n", | ||
"\n", | ||
" with open(os.path.join(save_dir, 'label.json'), 'w') as f:\n", | ||
" json.dump(all_label, f, indent=True)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stderr", | ||
"output_type": "stream", | ||
"text": [ | ||
"900it [00:40, 22.03it/s]\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"process(data_iter = train_iter, save_dir = os.path.join(data_dir, \"train\"))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 8, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stderr", | ||
"output_type": "stream", | ||
"text": [ | ||
"100it [00:04, 22.86it/s]\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"process(data_iter = val_iter, save_dir = os.path.join(data_dir, \"val\"))" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.6.2" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |