Skip to content

Commit

Permalink
added the local version of legal agent
Browse files Browse the repository at this point in the history
  • Loading branch information
Madhuvod committed Dec 11, 2024
1 parent 23526f9 commit 61d1aba
Show file tree
Hide file tree
Showing 3 changed files with 284 additions and 0 deletions.
Empty file.
Original file line number Diff line number Diff line change
@@ -0,0 +1,278 @@
import streamlit as st
from phi.agent import Agent
from phi.knowledge.pdf import PDFKnowledgeBase, PDFReader
from phi.vectordb.qdrant import Qdrant
from phi.model.ollama import Ollama
from phi.embedder.ollama import OllamaEmbedder
import tempfile
import os

def init_session_state():
if 'vector_db' not in st.session_state:
st.session_state.vector_db = None
if 'legal_team' not in st.session_state:
st.session_state.legal_team = None
if 'knowledge_base' not in st.session_state:
st.session_state.knowledge_base = None

def init_qdrant():
"""Initialize local Qdrant vector database"""
return Qdrant(
collection="legal_knowledge",
url="http://localhost:6333",
embedder=OllamaEmbedder(model="openhermes")
)

def process_document(uploaded_file, vector_db: Qdrant):
"""Process document using local resources"""
with tempfile.TemporaryDirectory() as temp_dir:
temp_file_path = os.path.join(temp_dir, uploaded_file.name)
with open(temp_file_path, "wb") as f:
f.write(uploaded_file.getbuffer())

try:
st.write("Processing document...")
# Create knowledge base with local embedder
knowledge_base = PDFKnowledgeBase(
path=temp_dir,
vector_db=vector_db,
reader=PDFReader(chunk=True),
recreate_vector_db=True
)

st.write("Loading knowledge base...")
knowledge_base.load()

# Verify knowledge base
st.write("Verifying knowledge base...")
test_results = knowledge_base.search("test")
if not test_results:
raise Exception("Knowledge base verification failed")

st.write("Knowledge base ready!")
return knowledge_base

except Exception as e:
raise Exception(f"Error processing document: {str(e)}")

def main():
st.set_page_config(page_title="Local Legal Document Analyzer", layout="wide")
init_session_state()

st.title("Local AI Legal Agent Team")

# Initialize local Qdrant
if not st.session_state.vector_db:
try:
st.session_state.vector_db = init_qdrant()
st.success("Connected to local Qdrant!")
except Exception as e:
st.error(f"Failed to connect to Qdrant: {str(e)}")
return

# Document upload section
st.header("📄 Document Upload")
uploaded_file = st.file_uploader("Upload Legal Document", type=['pdf'])

if uploaded_file:
with st.spinner("Processing document..."):
try:
knowledge_base = process_document(uploaded_file, st.session_state.vector_db)
st.session_state.knowledge_base = knowledge_base

# Initialize agents with Llama model
legal_researcher = Agent(
name="Legal Researcher",
role="Legal research specialist",
model=Ollama(id="llama3.1"),
knowledge=st.session_state.knowledge_base,
search_knowledge=True,
instructions=[
"Find and cite relevant legal cases and precedents",
"Provide detailed research summaries with sources",
"Reference specific sections from the uploaded document"
],
markdown=True
)

contract_analyst = Agent(
name="Contract Analyst",
role="Contract analysis specialist",
model=Ollama(id="llama3.1"),
knowledge=knowledge_base,
search_knowledge=True,
instructions=[
"Review contracts thoroughly",
"Identify key terms and potential issues",
"Reference specific clauses from the document"
],
markdown=True
)

legal_strategist = Agent(
name="Legal Strategist",
role="Legal strategy specialist",
model=Ollama(id="llama3.1"),
knowledge=knowledge_base,
search_knowledge=True,
instructions=[
"Develop comprehensive legal strategies",
"Provide actionable recommendations",
"Consider both risks and opportunities"
],
markdown=True
)

# Legal Agent Team
st.session_state.legal_team = Agent(
name="Legal Team Lead",
role="Legal team coordinator",
model=Ollama(id="llama3.1:8b"),
team=[legal_researcher, contract_analyst, legal_strategist],
knowledge=st.session_state.knowledge_base,
search_knowledge=True,
instructions=[
"Coordinate analysis between team members",
"Provide comprehensive responses",
"Ensure all recommendations are properly sourced",
"Reference specific parts of the uploaded document"
],
markdown=True
)

st.success("✅ Document processed and team initialized!")

except Exception as e:
st.error(f"Error processing document: {str(e)}")

st.divider()
st.header("🔍 Analysis Options")
analysis_type = st.selectbox(
"Select Analysis Type",
[
"Contract Review",
"Legal Research",
"Risk Assessment",
"Compliance Check",
"Custom Query"
]
)

# Main content area
if not st.session_state.vector_db:
st.info("👈 Waiting for Qdrant connection...")
elif not uploaded_file:
st.info("👈 Please upload a legal document to begin analysis")
elif st.session_state.legal_team:
st.header("Document Analysis")

analysis_configs = {
"Contract Review": {
"query": "Review this contract and identify key terms, obligations, and potential issues.",
"agents": ["Contract Analyst"],
"description": "Detailed contract analysis focusing on terms and obligations"
},
"Legal Research": {
"query": "Research relevant cases and precedents related to this document.",
"agents": ["Legal Researcher"],
"description": "Research on relevant legal cases and precedents"
},
"Risk Assessment": {
"query": "Analyze potential legal risks and liabilities in this document.",
"agents": ["Contract Analyst", "Legal Strategist"],
"description": "Combined risk analysis and strategic assessment"
},
"Compliance Check": {
"query": "Check this document for regulatory compliance issues.",
"agents": ["Legal Researcher", "Contract Analyst", "Legal Strategist"],
"description": "Comprehensive compliance analysis"
},
"Custom Query": {
"query": None,
"agents": ["Legal Researcher", "Contract Analyst", "Legal Strategist"],
"description": "Custom analysis using all available agents"
}
}

st.info(f"📋 {analysis_configs[analysis_type]['description']}")
st.write(f"🤖 Active Agents: {', '.join(analysis_configs[analysis_type]['agents'])}")

user_query = st.text_area(
"Enter your specific query:",
help="Add any specific questions or points you want to analyze"
)

if st.button("Analyze"):
if user_query or analysis_type != "Custom Query":
with st.spinner("Analyzing document..."):
try:
# Combine predefined and user queries
if analysis_type != "Custom Query":
combined_query = f"""
Using the uploaded document as reference:
Primary Analysis Task: {analysis_configs[analysis_type]['query']}
Additional User Query: {user_query if user_query else 'None'}
Focus Areas: {', '.join(analysis_configs[analysis_type]['agents'])}
Please search the knowledge base and provide specific references from the document.
"""
else:
combined_query = user_query

response = st.session_state.legal_team.run(combined_query)

# Display results in tabs
tabs = st.tabs(["Analysis", "Key Points", "Recommendations"])

with tabs[0]:
st.markdown("### Detailed Analysis")
if response.content:
st.markdown(response.content)
else:
for message in response.messages:
if message.role == 'assistant' and message.content:
st.markdown(message.content)

with tabs[1]:
st.markdown("### Key Points")
key_points_response = st.session_state.legal_team.run(
f"""Based on this previous analysis:
{response.content}
Please summarize the key points in bullet points.
Focus on insights from: {', '.join(analysis_configs[analysis_type]['agents'])}"""
)
if key_points_response.content:
st.markdown(key_points_response.content)
else:
for message in key_points_response.messages:
if message.role == 'assistant' and message.content:
st.markdown(message.content)

with tabs[2]:
st.markdown("### Recommendations")
recommendations_response = st.session_state.legal_team.run(
f"""Based on this previous analysis:
{response.content}
What are your key recommendations based on the analysis, the best course of action?
Provide specific recommendations from: {', '.join(analysis_configs[analysis_type]['agents'])}"""
)
if recommendations_response.content:
st.markdown(recommendations_response.content)
else:
for message in recommendations_response.messages:
if message.role == 'assistant' and message.content:
st.markdown(message.content)

except Exception as e:
st.error(f"Error during analysis: {str(e)}")
else:
st.warning("Please enter a query or select an analysis type")
else:
st.info("Please upload a legal document to begin analysis")

if __name__ == "__main__":
main()
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
phidata==2.5.33
streamlit==1.40.2
qdrant-client==1.12.1
pypdf
python-dotenv
ollama==0.1.6

0 comments on commit 61d1aba

Please sign in to comment.