Skip to content

Commit

Permalink
simple implementation of chain based - db routing
Browse files Browse the repository at this point in the history
  • Loading branch information
Madhuvod committed Dec 24, 2024
1 parent 0d3e3fc commit 29251a2
Showing 1 changed file with 165 additions and 130 deletions.
295 changes: 165 additions & 130 deletions rag_tutorials/rag_database_routing/rag_database_routing.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
import os
import getpass
from typing import List, Dict, Any, Literal
from dataclasses import dataclass
import streamlit as st
Expand All @@ -7,86 +8,122 @@
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import OpenAIEmbeddings
from langchain_openai import ChatOpenAI
from langchain_openai import OpenAIEmbeddings
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain_core.prompts import PromptTemplate
from langchain_openai import ChatOpenAI
import tempfile
from langchain_core.runnables import RunnableSequence
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_chroma import Chroma

def init_session_state():
"""Initialize session state variables"""
if 'openai_api_key' not in st.session_state:
st.session_state.openai_api_key = ""
if 'embeddings' not in st.session_state:
st.session_state.embeddings = None
if 'llm' not in st.session_state:
st.session_state.llm = None
if 'databases' not in st.session_state:
st.session_state.databases = {}

# Load environment variables
load_dotenv()
# Initialize session state at the top
init_session_state()

# Constants
DatabaseType = Literal["products", "customer_support", "financials"]
PERSIST_DIRECTORY = "db_storage"

ROUTER_TEMPLATE = """You are a query routing expert. Your job is to analyze user questions and determine which databases might contain relevant information.
Available databases:
1. Product Information: Contains product details, specifications, and features
2. Customer Support & FAQ: Contains customer support information, frequently asked questions, and guides
3. Financial Information: Contains financial data, revenue, costs, and liabilities
User question: {question}
Return a comma-separated list of relevant databases (no spaces after commas). Only use these exact strings:
- products
- customer_support
- financials
For example: "products,customer_support" if the question relates to both product info and support.
Your response:"""

@dataclass
class Database:
"""Class to represent a database configuration"""
class CollectionConfig:
name: str
description: str
collection_name: str
persist_directory: str

# Database configurations
DATABASES: Dict[DatabaseType, Database] = {
"products": Database(
# Collection configurations
COLLECTIONS: Dict[DatabaseType, CollectionConfig] = {
"products": CollectionConfig(
name="Product Information",
description="Product details, specifications, and features",
collection_name="products_db",
collection_name="products_collection",
persist_directory=f"{PERSIST_DIRECTORY}/products"
),
"customer_support": Database(
"customer_support": CollectionConfig(
name="Customer Support & FAQ",
description="Customer support information, frequently asked questions, and guides",
collection_name="support_db",
collection_name="support_collection",
persist_directory=f"{PERSIST_DIRECTORY}/support"
),
"financials": Database(
"financials": CollectionConfig(
name="Financial Information",
description="Financial data, revenue, costs, and liabilities",
collection_name="finance_db",
collection_name="finance_collection",
persist_directory=f"{PERSIST_DIRECTORY}/finance"
)
}

# Router prompt template
ROUTER_TEMPLATE = """You are a query routing expert. Your job is to analyze user questions and route them to the most appropriate database.
Available databases:
1. Product Information: Contains product details, specifications, and features
2. Customer Support & FAQ: Contains customer support information, frequently asked questions, and guides
3. Financial Information: Contains financial data, revenue, costs, and liabilities
User question: {question}
Return only one of these exact strings:
- products
- customer_support
- financials
Your response:"""

def init_session_state():
"""Initialize session state variables"""
if 'databases' not in st.session_state:
st.session_state.databases = {}
if 'embeddings' not in st.session_state:
st.session_state.embeddings = OpenAIEmbeddings()
if 'llm' not in st.session_state:
st.session_state.llm = ChatOpenAI(temperature=0)
if 'router_chain' not in st.session_state:
router_prompt = PromptTemplate(
template=ROUTER_TEMPLATE,
input_variables=["question"]
)
st.session_state.router_chain = LLMChain(
llm=st.session_state.llm,
prompt=router_prompt
)
def initialize_models():
"""Initialize OpenAI models with API key"""
if st.session_state.openai_api_key:
try:
os.environ["OPENAI_API_KEY"] = st.session_state.openai_api_key
# Test the API key with a small embedding request
test_embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
test_embeddings.embed_query("test")

# If successful, initialize the models
st.session_state.embeddings = test_embeddings
st.session_state.llm = ChatOpenAI(temperature=0)
st.session_state.databases = {
"products": Chroma(
collection_name=COLLECTIONS["products"].collection_name,
embedding_function=st.session_state.embeddings,
persist_directory=COLLECTIONS["products"].persist_directory
),
"customer_support": Chroma(
collection_name=COLLECTIONS["customer_support"].collection_name,
embedding_function=st.session_state.embeddings,
persist_directory=COLLECTIONS["customer_support"].persist_directory
),
"financials": Chroma(
collection_name=COLLECTIONS["financials"].collection_name,
embedding_function=st.session_state.embeddings,
persist_directory=COLLECTIONS["financials"].persist_directory
)
}
return True
except Exception as e:
st.error(f"Error connecting to OpenAI API: {str(e)}")
st.error("Please check your internet connection and API key.")
return False
return False

def process_document(file) -> List[Document]:
"""Process uploaded PDF document"""
if not st.session_state.embeddings:
st.error("OpenAI API connection not initialized. Please check your API key.")
return []

try:
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp_file:
tmp_file.write(file.getvalue())
Expand All @@ -109,124 +146,123 @@ def process_document(file) -> List[Document]:
st.error(f"Error processing document: {e}")
return []

def get_or_create_db(db_type: DatabaseType) -> Chroma:
"""Get or create a database for the specified type with proper initialization and error handling"""
try:
if db_type not in st.session_state.databases:
db_config = DATABASES[db_type]

# Ensure directory exists
os.makedirs(db_config.persist_directory, exist_ok=True)

# Initialize Chroma with proper settings
st.session_state.databases[db_type] = Chroma(
persist_directory=db_config.persist_directory,
embedding_function=st.session_state.embeddings,
collection_name=db_config.collection_name,
collection_metadata={
"description": db_config.description,
"database_type": db_type
}
)

# Log successful initialization
st.success(f"Initialized {db_config.name} database")

return st.session_state.databases[db_type]

except Exception as e:
st.error(f"Error initializing {db_type} database: {str(e)}")
raise

def route_query(question: str) -> DatabaseType:
"""Route the question to the appropriate database"""
response = st.session_state.router_chain.invoke({"question": question})
return response["text"].strip().lower()
def route_query(question: str) -> List[DatabaseType]:
"""Route the question to appropriate databases"""
router_prompt = ChatPromptTemplate.from_template(ROUTER_TEMPLATE)
router_chain = router_prompt | st.session_state.llm | StrOutputParser()
response = router_chain.invoke({"question": question})
return response.strip().lower().split(",")

def query_database(db: Chroma, question: str) -> str:
"""Query the database and return the response"""
docs = db.similarity_search(question, k=3)
def query_multiple_databases(question: str) -> str:
"""Query multiple relevant databases and combine results"""
database_types = route_query(question)
all_docs = []

context = "\n\n".join([doc.page_content for doc in docs])
# Collect relevant documents from each database
for db_type in database_types:
db = st.session_state.databases[db_type]
docs = db.similarity_search(question, k=2) # Reduced k since we're querying multiple DBs
all_docs.extend(docs)

prompt = PromptTemplate(
template="""Answer the question based on the following context. If you cannot answer the question based on the context, say "I don't have enough information to answer this question."
# Sort all documents by relevance score if available
# Note: You might need to modify this based on your similarity search implementation
context = "\n\n---\n\n".join([doc.page_content for doc in all_docs])

answer_prompt = ChatPromptTemplate.from_template(
"""Answer the question based on the following context from multiple databases.
If you use information from multiple sources, please indicate which type of source it came from.
If you cannot answer the question based on the context, say "I don't have enough information to answer this question."
Context: {context}
Question: {question}
Answer:""",
input_variables=["context", "question"]
Answer:"""
)

chain = LLMChain(llm=st.session_state.llm, prompt=prompt)
response = chain.invoke({"context": context, "question": question})
return response["text"]
answer_chain = answer_prompt | st.session_state.llm | StrOutputParser()
return answer_chain.invoke({"context": context, "question": question})

def clear_database(db_type: DatabaseType = None):
"""Clear specified database or all databases if none specified"""
def clear_collection(collection_type: DatabaseType = None):
"""Clear specified collection or all collections if none specified"""
try:
if db_type:
if db_type in st.session_state.databases:
db_config = DATABASES[db_type]
if collection_type:
if collection_type in st.session_state.databases:
collection_config = COLLECTIONS[collection_type]
# Delete collection
st.session_state.databases[db_type]._collection.delete()
st.session_state.databases[collection_type]._collection.delete()
# Remove from session state
del st.session_state.databases[db_type]
del st.session_state.databases[collection_type]
# Clean up persist directory
if os.path.exists(db_config.persist_directory):
if os.path.exists(collection_config.persist_directory):
import shutil
shutil.rmtree(db_config.persist_directory)
st.success(f"Cleared {db_config.name} database")
shutil.rmtree(collection_config.persist_directory)
st.success(f"Cleared {collection_config.name} collection")
else:
# Clear all databases
for db_type, db_config in DATABASES.items():
if db_type in st.session_state.databases:
st.session_state.databases[db_type]._collection.delete()
if os.path.exists(db_config.persist_directory):
# Clear all collections
for collection_type, collection_config in COLLECTIONS.items():
if collection_type in st.session_state.databases:
st.session_state.databases[collection_type]._collection.delete()
if os.path.exists(collection_config.persist_directory):
import shutil
shutil.rmtree(db_config.persist_directory)
shutil.rmtree(collection_config.persist_directory)
st.session_state.databases = {}
st.success("Cleared all databases")
st.success("Cleared all collections")
except Exception as e:
st.error(f"Error clearing database(s): {str(e)}")
st.error(f"Error clearing collection(s): {str(e)}")

def main():
st.title("📚 RAG Database Router ")

init_session_state()

# Sidebar for database management
st.title("📚 RAG with Database Routing")

with st.sidebar:
st.header("Configuration")
api_key = st.text_input(
"Enter OpenAI API Key:",
type="password",
value=st.session_state.openai_api_key,
key="api_key_input"
)

if api_key:
st.session_state.openai_api_key = api_key
if initialize_models():
st.success("API Key set successfully!")
else:
st.error("Invalid API Key")

if not st.session_state.openai_api_key:
st.warning("Please enter your OpenAI API key to continue")
st.stop()

st.divider()
st.header("Database Management")
if st.button("Clear All Databases"):
clear_database()
clear_collection()

st.divider()
st.subheader("Clear Individual Databases")
for db_type, db_config in DATABASES.items():
if st.button(f"Clear {db_config.name}"):
clear_database(db_type)
for collection_type, collection_config in COLLECTIONS.items():
if st.button(f"Clear {collection_config.name}"):
clear_collection(collection_type)

# Document upload section
st.header("Document Upload")
tabs = st.tabs([db.name for db in DATABASES.values()])
tabs = st.tabs([collection_config.name for collection_config in COLLECTIONS.values()])

for (db_type, db_config), tab in zip(DATABASES.items(), tabs):
for (collection_type, collection_config), tab in zip(COLLECTIONS.items(), tabs):
with tab:
st.write(db_config.description)
st.write(collection_config.description)
uploaded_file = st.file_uploader(
"Upload PDF document",
type="pdf",
key=f"upload_{db_type}"
key=f"upload_{collection_type}"
)

if uploaded_file:
with st.spinner('Processing document...'):
texts = process_document(uploaded_file)
if texts:
db = get_or_create_db(db_type)
db = st.session_state.databases[collection_type]
db.add_documents(texts)
st.success("Document processed and added to the database!")

Expand All @@ -236,15 +272,14 @@ def main():

if question:
with st.spinner('Finding answer...'):
# Route the question
db_type = route_query(question)
db = get_or_create_db(db_type)
# Get relevant databases
database_types = route_query(question)

# Display routing information
st.info(f"Routing question to: {DATABASES[db_type].name}")
st.info(f"Searching in: {', '.join([COLLECTIONS[db_type].name for db_type in database_types])}")

# Get and display answer
answer = query_database(db, question)
answer = query_multiple_databases(question)
st.write("### Answer")
st.write(answer)

Expand Down

0 comments on commit 29251a2

Please sign in to comment.