Deep learning experiments for esophageal cancer cell image classification using Keras/TensorFlow. See FinalReport.pdf for detailed methodology and results.
- Data:
Data_Generation.ipynb - Experiments:
Experiment_Model_AC_DA_GEN_46.ipynb,Experiment_ResNet.ipynb,Experiment_VGG.ipynb,Experiment_VIT.ipynb - Prediction:
ECCNetPrediction1.ipynb,ECCNetPrediction2.ipynb - Models:
model_ac_da_gen_46.keras,model.keras - Report:
FinalReport.pdf
- Source: cbiocancer
- Storage:
- Raw Dataset: Click Here
- Generated Dataset: Click Here
To access the dataset in Colab:
from google.colab import drive
drive.mount('/content/drive')Recommended: Google Colab with T4 GPU
- Upload notebooks or connect Google Drive
- Enable GPU: Runtime → Change runtime type → T4 GPU
- Install dependencies if needed in colab.
Load trained models:
import tensorflow as tf
model = tf.keras.models.load_model('model.keras')Run notebooks in Colab or Jupyter and ensure dataset paths are correctly configured.
See FinalReport.pdf for complete dataset description, methodology, and experimental results.
For questions or collaborations, please open an issue or contact the repository maintainer.