-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
for 3X3 matrix using Gauss Elimination
- Loading branch information
1 parent
a786157
commit 1cd1940
Showing
1 changed file
with
134 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,134 @@ | ||
Question: Find the Quadratic polynomial that is the least square fit to the following data: | ||
|
||
x | 0 | 1 | 2 | 3 | ||
---------------------- | ||
f(x)| 1 | 0 | 1 | 2 | ||
|
||
and f(x)=C1+C2*x+C3*x^2 | ||
|
||
//**i solved the problem using Gauss elimination process | ||
|
||
|
||
solution | ||
----------------------------------------------------------------------------------------------------------------------------------------------------------------- | ||
|
||
#include<stdio.h> | ||
#include<stdlib.h> | ||
|
||
int main() | ||
{ | ||
double x[4]={0,1,2,3},b[4][1]={1,0,1,2}; | ||
double a[4][3],at[3][4],A[3][3],B[3][1],mat[3][4]; | ||
|
||
for(int i=0;i<4;i++) | ||
{ | ||
a[i][0]=1; | ||
a[i][1]=x[i]; | ||
a[i][2]=x[i]*x[i]; | ||
//a[i][3]=x[i]*x[i]*x[i]; | ||
} | ||
|
||
|
||
/** making transpose matrix **/ | ||
for(int i=0;i<3;i++) | ||
{ | ||
for(int j=0;j<4;j++) | ||
{ | ||
at[i][j]=a[j][i]; | ||
} | ||
} | ||
|
||
|
||
/* multilication of transpose matrix X matrix */ | ||
for(int i=0;i<3;i++) | ||
{ | ||
for(int j=0;j<4;j++) | ||
{ | ||
A[i][j]=0; | ||
} | ||
} | ||
|
||
for(int i=0;i<3;i++) | ||
{ | ||
for(int j=0;j<3;j++) | ||
{ | ||
for(int k=0;k<4;k++) | ||
{ | ||
A[i][j]+=(at[i][k]*a[k][j]); | ||
} | ||
} | ||
} | ||
|
||
|
||
/* updating B */ | ||
for(int i=0;i<3;i++) | ||
{ | ||
for(int j=0;j<1;j++) | ||
{ | ||
B[i][j]=0; | ||
} | ||
} | ||
|
||
for(int i=0;i<3;i++) | ||
{ | ||
for(int j=0;j<1;j++) | ||
{ | ||
for(int k=0;k<4;k++) | ||
{ | ||
B[i][j]+=(at[i][k]*b[k][j]); | ||
} | ||
} | ||
} | ||
|
||
|
||
/** using gauss elimination process to find the least square fitted values **/ | ||
for(int i=0;i<3;i++) | ||
{ | ||
for(int j=0;j<3;j++) | ||
{ | ||
mat[i][j]=A[i][j]; | ||
} | ||
mat[i][3]=B[i][0]; | ||
} | ||
|
||
|
||
/** upper triangular matrix **/ | ||
for(int j=0;j<3;j++) | ||
{ | ||
for(int i=j+1;i<3;i++) | ||
{ | ||
int m=mat[j][j]; | ||
int n=mat[i][j]; | ||
|
||
for(int k=0;k<=3;k++) | ||
{ | ||
mat[i][k]=(m*mat[i][k])-(n*mat[j][k]); | ||
} | ||
} | ||
} | ||
|
||
|
||
/** back substitution **/ | ||
double ans[3]; | ||
ans[3-1]=(mat[3-1][3]/mat[3-1][3-1]); | ||
|
||
for(int j=3-2;j>-1;j--) | ||
{ | ||
double sum=0; | ||
for(int i=j+1;i<3;i++) | ||
{ | ||
sum+=(mat[j][i]*ans[i]); | ||
//printf("sum %9.3lf\n",sum); | ||
} | ||
|
||
ans[j]=(mat[j][3]-sum)/(mat[j][j]); | ||
} | ||
|
||
|
||
/** answer **/ | ||
for(int i=0;i<3;i++) | ||
{ | ||
printf("c%d = %9.3lf\n",i+1,ans[i]); | ||
} | ||
} | ||
|