-
Notifications
You must be signed in to change notification settings - Fork 187
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
f0c3077
commit 906c842
Showing
4 changed files
with
114 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,54 @@ | ||
# coding=utf-8 | ||
|
||
import numpy as np | ||
from keras.callbacks import EarlyStopping | ||
from keras.datasets import imdb | ||
from keras.preprocessing import sequence | ||
|
||
from rcnn import RCNN | ||
|
||
max_features = 5000 | ||
maxlen = 400 | ||
batch_size = 32 | ||
embedding_dims = 50 | ||
epochs = 10 | ||
|
||
print('Loading data...') | ||
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features) | ||
print(len(x_train), 'train sequences') | ||
print(len(x_test), 'test sequences') | ||
|
||
print('Pad sequences (samples x time)...') | ||
x_train = sequence.pad_sequences(x_train, maxlen=maxlen) | ||
x_test = sequence.pad_sequences(x_test, maxlen=maxlen) | ||
print('x_train shape:', x_train.shape) | ||
print('x_test shape:', x_test.shape) | ||
|
||
print('Prepare input for model...') | ||
x_train_current = x_train | ||
x_train_left = np.hstack([np.expand_dims(x_train[:, 0], axis=1), x_train[:, 0:-1]]) | ||
x_train_right = np.hstack([x_train[:, 1:], np.expand_dims(x_train[:, -1], axis=1)]) | ||
x_test_current = x_test | ||
x_test_left = np.hstack([np.expand_dims(x_test[:, 0], axis=1), x_test[:, 0:-1]]) | ||
x_test_right = np.hstack([x_test[:, 1:], np.expand_dims(x_test[:, -1], axis=1)]) | ||
print('x_train_current shape:', x_train_current.shape) | ||
print('x_train_left shape:', x_train_left.shape) | ||
print('x_train_right shape:', x_train_right.shape) | ||
print('x_test_current shape:', x_test_current.shape) | ||
print('x_test_left shape:', x_test_left.shape) | ||
print('x_test_right shape:', x_test_right.shape) | ||
|
||
print('Build model...') | ||
model = RCNN(maxlen, max_features, embedding_dims).get_model() | ||
model.compile('adam', 'binary_crossentropy', metrics=['accuracy']) | ||
|
||
print('Train...') | ||
early_stopping = EarlyStopping(monitor='val_acc', patience=3, mode='max') | ||
model.fit([x_train_current, x_train_left, x_train_right], y_train, | ||
batch_size=batch_size, | ||
epochs=epochs, | ||
callbacks=[early_stopping], | ||
validation_data=([x_test_current, x_test_left, x_test_right], y_test)) | ||
|
||
print('Test...') | ||
result = model.predict([x_test_current, x_test_left, x_test_right]) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,38 @@ | ||
# coding=utf-8 | ||
|
||
from keras import Input, Model | ||
from keras import backend as K | ||
from keras.layers import Embedding, Dense, SimpleRNN, Lambda, Concatenate, Conv1D, GlobalMaxPooling1D | ||
|
||
|
||
class RCNN(object): | ||
def __init__(self, maxlen, max_features, embedding_dims, | ||
class_num=1, | ||
last_activation='sigmoid'): | ||
self.maxlen = maxlen | ||
self.max_features = max_features | ||
self.embedding_dims = embedding_dims | ||
self.class_num = class_num | ||
self.last_activation = last_activation | ||
|
||
def get_model(self): | ||
input_current = Input((self.maxlen,)) | ||
input_left = Input((self.maxlen,)) | ||
input_right = Input((self.maxlen,)) | ||
|
||
embedder = Embedding(self.max_features, self.embedding_dims, input_length=self.maxlen) | ||
embedding_current = embedder(input_current) | ||
embedding_left = embedder(input_left) | ||
embedding_right = embedder(input_right) | ||
|
||
x_left = SimpleRNN(128, return_sequences=True)(embedding_left) | ||
x_right = SimpleRNN(128, return_sequences=True, go_backwards=True)(embedding_right) | ||
x_right = Lambda(lambda x: K.reverse(x, axes=1))(x_right) | ||
x = Concatenate(axis=2)([x_left, embedding_current, x_right]) | ||
|
||
x = Conv1D(64, kernel_size=1, activation='tanh')(x) | ||
x = GlobalMaxPooling1D()(x) | ||
|
||
output = Dense(self.class_num, activation=self.last_activation)(x) | ||
model = Model(inputs=[input_current, input_left, input_right], outputs=output) | ||
return model |