Skip to content

Automatic sparsity detection #133

Closed
Closed
@ChrisRackauckas

Description

@ChrisRackauckas

Currently needs overload of base functionality.

using ModelingToolkit
using Test

# Define some variables
@parameters t σ ρ β
@variables x(t) y(t) z(t)
@derivatives Dx'~x Dy'~y Dz'~z

### Automatic conversion to symbolic

function lorenz(du,u,p,t)
 du[1] = p[1]*(u[2]-u[1])
 du[2] = u[1]*(p[2]-u[3]) - u[2]
 du[3] = u[1]*u[2] - p[3]*u[3]
end
u = [x,y,z]
du = similar(u)
p = [σ,ρ,β]
lorenz(du,u,p,t)

du

J = [Dx(du[1]) Dy(du[1]) Dz(du[1])
     Dx(du[2]) Dy(du[2]) Dz(du[2])
     Dx(du[3]) Dy(du[3]) Dz(du[3])]
J = expand_derivatives.(J)

using SparseArrays
function SparseArrays.SparseMatrixCSC(M::Matrix{T}) where {T}
    @assert !SparseArrays.has_offset_axes(M)
    I = findall(!iszero, M)
    eltypeTiI = [i[1] for i in I]
    eltypeTiJ = [i[2] for i in I]
    eltypeTvV = [M[i] for i in I]
    return SparseArrays.sparse_IJ_sorted!(eltypeTiI, eltypeTiJ, eltypeTvV, size(M)...)
end
SparseMatrixCSC(J)

Metadata

Metadata

Assignees

No one assigned

    Labels

    help wantedExtra attention is needed

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions