Skip to content

Weighted Bayesian Ensemblefits #191

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 3 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@ OptimizationBBO = "3e6eede4-6085-4f62-9a71-46d9bc1eb92b"
OptimizationMOI = "fd9f6733-72f4-499f-8506-86b2bdd0dea1"
OptimizationNLopt = "4e6fcdb7-1186-4e1f-a706-475e75c168bb"
Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
Reexport = "189a3867-3050-52da-a836-e630ba90ab69"
SciMLBase = "0bca4576-84f4-4d90-8ffe-ffa030f20462"
SciMLExpectations = "afe9f18d-7609-4d0e-b7b7-af0cb72b8ea8"
Expand Down
1 change: 1 addition & 0 deletions src/EasyModelAnalysis.jl
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@ using GlobalSensitivity, Turing
using SciMLExpectations
@reexport using Plots
using SciMLBase.EnsembleAnalysis
using Random

include("basics.jl")
include("datafit.jl")
Expand Down
182 changes: 176 additions & 6 deletions src/datafit.jl
Original file line number Diff line number Diff line change
Expand Up @@ -192,16 +192,15 @@ function global_datafit(prob, pbounds, data; maxiters = 10000, loss = l2loss)
Pair.(pkeys, res.u)
end

function bayes_unpack_data(p, data)
pdist = getfield.(p, :second)
pkeys = getfield.(p, :first)
function bayes_unpack_data(p::AbstractVector{<:Pair}, data)
pdist, pkeys = bayes_unpack_data(p)
ts = first.(last.(data))
lastt = maximum(last, ts)
timeseries = last.(last.(data))
datakeys = first.(data)
(pdist, pkeys, ts, lastt, timeseries, datakeys)
end
function bayes_unpack_data(p)
function bayes_unpack_data(p::AbstractVector{<:Pair})
pdist = getfield.(p, :second)
pkeys = getfield.(p, :first)
(pdist, pkeys)
Expand Down Expand Up @@ -249,6 +248,128 @@ Turing.@model function bayesianODE(prob,
return nothing
end

"""
Weights can be unbounded. Length of weights must be one less than the length of sols, to apply a sum-to-1 constraint.
Last `sol` is given the weight `1 - sum(weights)`.
"""
struct WeightedSol{T, S <: Tuple{Vararg{AbstractVector{T}}}, W} <: AbstractVector{T}
sols::S
weights::W
function WeightedSol{T}(sols::S,
weights::W) where {T, S <: Tuple{Vararg{AbstractVector{T}}}, W}
@assert length(sols) == length(weights) + 1
new{T, S, W}(sols, weights)
end
end
Base.length(ws::WeightedSol) = length(first(ws.sols))
Base.size(ws::WeightedSol) = (length(first(ws.sols)),)
function Base.getindex(ws::WeightedSol{T}, i::Int) where {T}
s = zero(T)
w = zero(T)
for j in eachindex(ws.weights)
w += ws.weights[j]
s += ws.weights[j] * ws.sols[j][i]
end
return s + (one(T) - w) * ws.sols[end][i]
end
function WeightedSol(sols, select, weights)
T = eltype(weights)
s = map(Base.Fix2(getindex, select), sols)
WeightedSol{T}(s, weights)
end
function bayes_unpack_data(p::Tuple{Vararg{<:AbstractVector{<:Pair}}}, data)
pdist, pkeys = bayes_unpack_data(p)
ts = first.(last.(data))
lastt = maximum(last, ts)
timeseries = last.(last.(data))
datakeys = first.(data)
(pdist, pkeys, ts, lastt, timeseries, datakeys)
end
function bayes_unpack_data(p::Tuple{Vararg{<:AbstractVector{<:Pair}}})
unpacked = map(bayes_unpack_data, p)
map(first, unpacked), map(last, unpacked)
end

struct Grouper{N}
sizes::NTuple{N, Int}
end
function (g::Grouper)(x)
i = Ref(0)
map(g.sizes) do N
_i = i[]
i[] = _i + N
view(x, (_i + 1):(_i + N))
end
end
function flatten(x::Tuple)
reduce(vcat, x), Grouper(map(length, x))
end

function getsols(probs, probspkeys, ppriors, t::AbstractArray)
map(probs, probspkeys, ppriors) do prob, pkeys, pprior
solve(remake(prob, tspan = (prob.tspan[1], t[end]), p = Pair.(pkeys, pprior)),
saveat = t)
end
end
function getsols(probs, probspkeys, ppriors, lastt::Number)
map(probs, probspkeys, ppriors) do prob, pkeys, pprior
solve(remake(prob, tspan = (prob.tspan[1], lastt), p = Pair.(pkeys, pprior)))
end
end

Turing.@model function ensemblebayesianODE(probs::Union{Tuple, AbstractVector},
t,
pdist,
grouppriorsfunc,
probspkeys,
data,
noise_prior)
σ ~ noise_prior
ppriors ~ product_distribution(pdist)

Nprobs = length(probs)
Nprobs⁻¹ = inv(Nprobs)
weights ~ MvNormal(Distributions.Fill(Nprobs⁻¹, Nprobs - 1), Nprobs⁻¹)
sols = getsols(probs, probspkeys, grouppriorsfunc(ppriors), t)
if !all(SciMLBase.successful_retcode, sols)
Turing.DynamicPPL.acclogp!!(__varinfo__, -Inf)
return nothing
end
for i in eachindex(data)
data[i].second ~ MvNormal(WeightedSol(sols, data[i].first, weights), σ^2 * I)
end
return nothing
end
Turing.@model function ensemblebayesianODE(probs::Union{Tuple, AbstractVector},
pdist,
grouppriorsfunc,
probspkeys,
ts,
lastt,
timeseries,
datakeys,
noise_prior)
σ ~ noise_prior
ppriors ~ product_distribution(pdist)

sols = getsols(probs, probspkeys, grouppriorsfunc(ppriors), lastt)

Nprobs = length(probs)
Nprobs⁻¹ = inv(Nprobs)
weights ~ MvNormal(Distributions.Fill(Nprobs⁻¹, Nprobs - 1), Nprobs⁻¹)
if !all(SciMLBase.successful_retcode, sols)
Turing.DynamicPPL.acclogp!!(__varinfo__, -Inf)
return nothing
end
for i in eachindex(datakeys)
vals = map(sols) do sol
sol(ts[i]; idxs = datakeys[i])
end
timeseries[i] ~ MvNormal(WeightedSol(vals, weights), σ^2 * I)
end
return nothing
end

"""
bayesian_datafit(prob, p, t, data)
bayesian_datafit(prob, p, data)
Expand Down Expand Up @@ -288,8 +409,8 @@ function bayesian_datafit(prob,
mcmcensemble::AbstractMCMC.AbstractMCMCEnsemble = Turing.MCMCThreads(),
nchains = 4,
niter = 1000)
(pkeys, pdata) = bayes_unpack_data(p)
model = bayesianODE(prob, t, pkeys, pdata, data, noise_prior)
(pdist, pkeys) = bayes_unpack_data(p)
model = bayesianODE(prob, t, pdist, pkeys, data, noise_prior)
chain = Turing.sample(model,
Turing.NUTS(0.65),
mcmcensemble,
Expand Down Expand Up @@ -318,6 +439,55 @@ function bayesian_datafit(prob,
[Pair(p[i].first, collect(chain["pprior[" * string(i) * "]"])[:])
for i in eachindex(p)]
end
function bayesian_datafit(probs::Union{Tuple, AbstractVector},
p::Tuple{Vararg{<:AbstractVector{<:Pair}}},
t,
data;
noise_prior = InverseGamma(2, 3),
mcmcensemble::AbstractMCMC.AbstractMCMCEnsemble = Turing.MCMCThreads(),
nchains = 4,
niter = 1000)
(pdist_, pkeys) = bayes_unpack_data(p)
pdist, grouppriorsfunc = flatten(pdist_)

model = ensemblebayesianODE(probs, t, pdist, grouppriorsfunc, pkeys, data, noise_prior)
chain = Turing.sample(model,
Turing.NUTS(0.65),
mcmcensemble,
niter,
nchains;
progress = true)
[Pair(p[i].first, collect(chain["pprior[" * string(i) * "]"])[:])
for i in eachindex(p)]
end

function bayesian_datafit(probs::Union{Tuple, AbstractVector},
p::Tuple{Vararg{<:AbstractVector{<:Pair}}},
data;
noise_prior = InverseGamma(2, 3),
mcmcensemble::AbstractMCMC.AbstractMCMCEnsemble = Turing.MCMCThreads(),
nchains = 4,
niter = 1_000)
pdist_, pkeys, ts, lastt, timeseries, datakeys = bayes_unpack_data(p, data)
pdist, grouppriorsfunc = flatten(pdist_)
model = ensemblebayesianODE(probs,
pdist,
grouppriorsfunc,
pkeys,
ts,
lastt,
timeseries,
datakeys,
noise_prior)
chain = Turing.sample(model,
Turing.NUTS(0.65),
mcmcensemble,
niter,
nchains;
progress = true)
[Pair(p[i].first, collect(chain["pprior[" * string(i) * "]"])[:])
for i in eachindex(p)]
end

"""
model_forecast_score(probs::AbstractVector, ts::AbstractVector, dataset::AbstractVector{<:Pair})
Expand Down