|
| 1 | +############################################################################# |
| 2 | +# Copyright (C) 2020-2023 German Aerospace Center (DLR-SC) |
| 3 | +# |
| 4 | +# Authors: Agatha Schmidt, Henrik Zunker |
| 5 | +# |
| 6 | +# Contact: Martin J. Kuehn <Martin.Kuehn@DLR.de> |
| 7 | +# |
| 8 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 9 | +# you may not use this file except in compliance with the License. |
| 10 | +# You may obtain a copy of the License at |
| 11 | +# |
| 12 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 13 | +# |
| 14 | +# Unless required by applicable law or agreed to in writing, software |
| 15 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 16 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 17 | +# See the License for the specific language governing permissions and |
| 18 | +# limitations under the License. |
| 19 | +############################################################################# |
| 20 | +import copy |
| 21 | +import os |
| 22 | +import pickle |
| 23 | +import random |
| 24 | +import json |
| 25 | +from datetime import date |
| 26 | + |
| 27 | +import numpy as np |
| 28 | +import tensorflow as tf |
| 29 | +from progress.bar import Bar |
| 30 | +from sklearn.preprocessing import FunctionTransformer |
| 31 | + |
| 32 | +from memilio.simulation import (AgeGroup, Damping, LogLevel, set_log_level) |
| 33 | +from memilio.simulation.secir import (Index_InfectionState, |
| 34 | + InfectionState, Model, |
| 35 | + interpolate_simulation_result, simulate) |
| 36 | + |
| 37 | + |
| 38 | +def interpolate_age_groups(data_entry): |
| 39 | + """! Interpolates the age groups from the population data into the age groups used in the simulation. |
| 40 | + We assume that the people in the age groups are uniformly distributed. |
| 41 | + @param data_entry Data entry containing the population data. |
| 42 | + @return List containing the population in each age group used in the simulation. |
| 43 | + """ |
| 44 | + age_groups = { |
| 45 | + "A00-A04": data_entry['<3 years'] + data_entry['3-5 years'] * 2 / 3, |
| 46 | + "A05-A14": data_entry['3-5 years'] * 1 / 3 + data_entry['6-14 years'], |
| 47 | + "A15-A34": data_entry['15-17 years'] + data_entry['18-24 years'] + data_entry['25-29 years'] + data_entry['30-39 years'] * 1 / 2, |
| 48 | + "A35-A59": data_entry['30-39 years'] * 1 / 2 + data_entry['40-49 years'] + data_entry['50-64 years'] * 2 / 3, |
| 49 | + "A60-A79": data_entry['50-64 years'] * 1 / 3 + data_entry['65-74 years'] + data_entry['>74 years'] * 1 / 5, |
| 50 | + "A80+": data_entry['>74 years'] * 4 / 5 |
| 51 | + } |
| 52 | + return [age_groups[key] for key in age_groups] |
| 53 | + |
| 54 | + |
| 55 | +def remove_confirmed_compartments(result_array): |
| 56 | + """! Removes the confirmed compartments which are not used in the data generation. |
| 57 | + @param result_array Array containing the simulation results. |
| 58 | + @return Array containing the simulation results without the confirmed compartments. |
| 59 | + """ |
| 60 | + num_groups = int(result_array.shape[1] / 10) |
| 61 | + delete_indices = [index for i in range( |
| 62 | + num_groups) for index in (3+10*i, 5+10*i)] |
| 63 | + return np.delete(result_array, delete_indices, axis=1) |
| 64 | + |
| 65 | + |
| 66 | +def transform_data(data, transformer, num_runs): |
| 67 | + """! Transforms the data by a logarithmic normalization. |
| 68 | + Reshaping is necessary, because the transformer needs an array with dimension <= 2. |
| 69 | + @param data Data to be transformed. |
| 70 | + @param transformer Transformer used for the transformation. |
| 71 | + @return Transformed data. |
| 72 | + """ |
| 73 | + data = np.asarray(data).transpose(2, 0, 1).reshape(48, -1) |
| 74 | + scaled_data = transformer.transform(data) |
| 75 | + return tf.convert_to_tensor(scaled_data.transpose().reshape(num_runs, -1, 48)) |
| 76 | + |
| 77 | + |
| 78 | +def run_secir_groups_simulation(days, damping_day, populations): |
| 79 | + """! Uses an ODE SECIR model allowing for asymptomatic infection with 6 different age groups. The model is not stratified by region. |
| 80 | + Virus-specific parameters are fixed and initial number of persons in the particular infection states are chosen randomly from defined ranges. |
| 81 | + @param Days Describes how many days we simulate within a single run. |
| 82 | + @param damping_day The day when damping is applied. |
| 83 | + @param populations List containing the population in each age group. |
| 84 | + @return List containing the populations in each compartment used to initialize the run. |
| 85 | + """ |
| 86 | + set_log_level(LogLevel.Off) |
| 87 | + |
| 88 | + start_day = 1 |
| 89 | + start_month = 1 |
| 90 | + start_year = 2019 |
| 91 | + dt = 0.1 |
| 92 | + |
| 93 | + # Define age Groups |
| 94 | + groups = ['0-4', '5-14', '15-34', '35-59', '60-79', '80+'] |
| 95 | + num_groups = len(groups) |
| 96 | + |
| 97 | + # Initialize Parameters |
| 98 | + model = Model(num_groups) |
| 99 | + |
| 100 | + # Set parameters |
| 101 | + for i in range(num_groups): |
| 102 | + # Compartment transition duration |
| 103 | + model.parameters.IncubationTime[AgeGroup(i)] = 5.2 |
| 104 | + model.parameters.TimeInfectedSymptoms[AgeGroup(i)] = 6. |
| 105 | + model.parameters.SerialInterval[AgeGroup(i)] = 4.2 |
| 106 | + model.parameters.TimeInfectedSevere[AgeGroup(i)] = 12. |
| 107 | + model.parameters.TimeInfectedCritical[AgeGroup(i)] = 8. |
| 108 | + |
| 109 | + # Initial number of people in each compartment with random numbers |
| 110 | + model.populations[AgeGroup(i), Index_InfectionState( |
| 111 | + InfectionState.Exposed)] = random.uniform( |
| 112 | + 0.00025, 0.0005) * populations[i] |
| 113 | + model.populations[AgeGroup(i), Index_InfectionState( |
| 114 | + InfectionState.InfectedNoSymptoms)] = random.uniform( |
| 115 | + 0.0001, 0.00035) * populations[i] |
| 116 | + model.populations[AgeGroup(i), Index_InfectionState( |
| 117 | + InfectionState.InfectedNoSymptomsConfirmed)] = 0 |
| 118 | + model.populations[AgeGroup(i), Index_InfectionState( |
| 119 | + InfectionState.InfectedSymptoms)] = random.uniform( |
| 120 | + 0.00007, 0.0001) * populations[i] |
| 121 | + model.populations[AgeGroup(i), Index_InfectionState( |
| 122 | + InfectionState.InfectedSymptomsConfirmed)] = 0 |
| 123 | + model.populations[AgeGroup(i), Index_InfectionState( |
| 124 | + InfectionState.InfectedSevere)] = random.uniform( |
| 125 | + 0.00003, 0.00006) * populations[i] |
| 126 | + model.populations[AgeGroup(i), Index_InfectionState( |
| 127 | + InfectionState.InfectedCritical)] = random.uniform( |
| 128 | + 0.00001, 0.00002) * populations[i] |
| 129 | + model.populations[AgeGroup(i), Index_InfectionState( |
| 130 | + InfectionState.Recovered)] = random.uniform( |
| 131 | + 0.002, 0.008) * populations[i] |
| 132 | + model.populations[AgeGroup(i), |
| 133 | + Index_InfectionState(InfectionState.Dead)] = 0 |
| 134 | + model.populations.set_difference_from_group_total_AgeGroup( |
| 135 | + (AgeGroup(i), Index_InfectionState(InfectionState.Susceptible)), populations[i]) |
| 136 | + |
| 137 | + # Compartment transition propabilities |
| 138 | + model.parameters.RelativeTransmissionNoSymptoms[AgeGroup(i)] = 0.5 |
| 139 | + model.parameters.TransmissionProbabilityOnContact[AgeGroup(i)] = 0.1 |
| 140 | + model.parameters.RecoveredPerInfectedNoSymptoms[AgeGroup(i)] = 0.09 |
| 141 | + model.parameters.RiskOfInfectionFromSymptomatic[AgeGroup(i)] = 0.25 |
| 142 | + model.parameters.SeverePerInfectedSymptoms[AgeGroup(i)] = 0.2 |
| 143 | + model.parameters.CriticalPerSevere[AgeGroup(i)] = 0.25 |
| 144 | + model.parameters.DeathsPerCritical[AgeGroup(i)] = 0.3 |
| 145 | + # twice the value of RiskOfInfectionFromSymptomatic |
| 146 | + model.parameters.MaxRiskOfInfectionFromSymptomatic[AgeGroup(i)] = 0.5 |
| 147 | + |
| 148 | + # StartDay is the n-th day of the year |
| 149 | + model.parameters.StartDay = ( |
| 150 | + date(start_year, start_month, start_day) - date(start_year, 1, 1)).days |
| 151 | + |
| 152 | + # Load baseline and minimum contact matrix and assign them to the model |
| 153 | + baseline = getBaselineMatrix() |
| 154 | + minimum = getMinimumMatrix() |
| 155 | + |
| 156 | + model.parameters.ContactPatterns.cont_freq_mat[0].baseline = baseline |
| 157 | + model.parameters.ContactPatterns.cont_freq_mat[0].minimum = minimum |
| 158 | + |
| 159 | + # Generate a damping matrix and assign it to the model |
| 160 | + damping = np.ones((num_groups, num_groups) |
| 161 | + ) * np.float16(random.uniform(0, 0.5)) |
| 162 | + |
| 163 | + model.parameters.ContactPatterns.cont_freq_mat.add_damping(Damping( |
| 164 | + coeffs=(damping), t=damping_day, level=0, type=0)) |
| 165 | + |
| 166 | + damped_contact_matrix = model.parameters.ContactPatterns.cont_freq_mat.get_matrix_at( |
| 167 | + damping_day+1) |
| 168 | + |
| 169 | + # Apply mathematical constraints to parameters |
| 170 | + model.apply_constraints() |
| 171 | + |
| 172 | + # Run Simulation |
| 173 | + result = simulate(0, days, dt, model) |
| 174 | + |
| 175 | + # Interpolate simulation result on days time scale |
| 176 | + result = interpolate_simulation_result(result) |
| 177 | + |
| 178 | + result_array = remove_confirmed_compartments( |
| 179 | + np.transpose(result.as_ndarray()[1:, :])) |
| 180 | + |
| 181 | + # Omit first column, as the time points are not of interest here. |
| 182 | + dataset_entries = copy.deepcopy(result_array) |
| 183 | + |
| 184 | + return dataset_entries.tolist(), damped_contact_matrix |
| 185 | + |
| 186 | + |
| 187 | +def generate_data( |
| 188 | + num_runs, path_out, path_population, input_width, label_width, |
| 189 | + normalize=True, save_data=True): |
| 190 | + """! Generate data sets of num_runs many equation-based model simulations and transforms the computed results by a log(1+x) transformation. |
| 191 | + Divides the results in input and label data sets and returns them as a dictionary of two TensorFlow Stacks. |
| 192 | + In general, we have 8 different compartments and 6 age groups. If we choose, |
| 193 | + input_width = 5 and label_width = 20, the dataset has |
| 194 | + - input with dimension 5 x 8 x 6 |
| 195 | + - labels with dimension 20 x 8 x 6 |
| 196 | + @param num_runs Number of times, the function run_secir_groups_simulation is called. |
| 197 | + @param path_out Path, where the dataset is saved to. |
| 198 | + @param path_population Path, where we try to read the population data. |
| 199 | + @param input_width Int value that defines the number of time series used for the input. |
| 200 | + @param label_width Int value that defines the size of the labels. |
| 201 | + @param normalize [Default: true] Option to transform dataset by logarithmic normalization. |
| 202 | + @param save_data [Default: true] Option to save the dataset. |
| 203 | + @return Data dictionary of input and label data sets. |
| 204 | + """ |
| 205 | + data = { |
| 206 | + "inputs": [], |
| 207 | + "labels": [], |
| 208 | + "contact_matrix": [], |
| 209 | + "damping_day": [] |
| 210 | + } |
| 211 | + |
| 212 | + # The number of days is the same as the sum of input and label width. |
| 213 | + # Since the first day of the input is day 0, we still need to subtract 1. |
| 214 | + days = input_width + label_width - 1 |
| 215 | + |
| 216 | + # Load population data |
| 217 | + population = get_population(path_population) |
| 218 | + |
| 219 | + # show progess in terminal for longer runs |
| 220 | + # Due to the random structure, there's currently no need to shuffle the data |
| 221 | + bar = Bar('Number of Runs done', max=num_runs) |
| 222 | + for _ in range(0, num_runs): |
| 223 | + |
| 224 | + # Generate a random damping day |
| 225 | + damping_day = random.randrange( |
| 226 | + input_width, input_width+label_width) |
| 227 | + |
| 228 | + data_run, damped_contact_matrix = run_secir_groups_simulation( |
| 229 | + days, damping_day, population[random.randint(0, len(population) - 1)]) |
| 230 | + data['inputs'].append(data_run[:input_width]) |
| 231 | + data['labels'].append(data_run[input_width:]) |
| 232 | + data['contact_matrix'].append(np.array(damped_contact_matrix)) |
| 233 | + data['damping_day'].append(damping_day) |
| 234 | + bar.next() |
| 235 | + bar.finish() |
| 236 | + |
| 237 | + if normalize: |
| 238 | + # logarithmic normalization |
| 239 | + transformer = FunctionTransformer(np.log1p, validate=True) |
| 240 | + |
| 241 | + # transform inputs and labels |
| 242 | + data['inputs'] = transform_data(data['inputs'], transformer, num_runs) |
| 243 | + data['labels'] = transform_data(data['labels'], transformer, num_runs) |
| 244 | + else: |
| 245 | + data['inputs'] = tf.convert_to_tensor(data['inputs']) |
| 246 | + data['labels'] = tf.convert_to_tensor(data['labels']) |
| 247 | + |
| 248 | + if save_data: |
| 249 | + # check if data directory exists. If necessary, create it. |
| 250 | + if not os.path.isdir(path_out): |
| 251 | + os.mkdir(path_out) |
| 252 | + |
| 253 | + # save dict to json file |
| 254 | + with open(os.path.join(path_out, 'data_secir_groups.pickle'), 'wb') as f: |
| 255 | + pickle.dump(data, f) |
| 256 | + return data |
| 257 | + |
| 258 | + |
| 259 | +def getBaselineMatrix(): |
| 260 | + """! loads the baselinematrix |
| 261 | + """ |
| 262 | + |
| 263 | + baseline_contact_matrix0 = os.path.join( |
| 264 | + "./data/contacts/baseline_home.txt") |
| 265 | + baseline_contact_matrix1 = os.path.join( |
| 266 | + "./data/contacts/baseline_school_pf_eig.txt") |
| 267 | + baseline_contact_matrix2 = os.path.join( |
| 268 | + "./data/contacts/baseline_work.txt") |
| 269 | + baseline_contact_matrix3 = os.path.join( |
| 270 | + "./data/contacts/baseline_other.txt") |
| 271 | + |
| 272 | + baseline = np.loadtxt(baseline_contact_matrix0) \ |
| 273 | + + np.loadtxt(baseline_contact_matrix1) + \ |
| 274 | + np.loadtxt(baseline_contact_matrix2) + \ |
| 275 | + np.loadtxt(baseline_contact_matrix3) |
| 276 | + |
| 277 | + return baseline |
| 278 | + |
| 279 | + |
| 280 | +def getMinimumMatrix(): |
| 281 | + """! loads the minimum matrix |
| 282 | + """ |
| 283 | + |
| 284 | + minimum_contact_matrix0 = os.path.join( |
| 285 | + "./data/contacts/minimum_home.txt") |
| 286 | + minimum_contact_matrix1 = os.path.join( |
| 287 | + "./data/contacts/minimum_school_pf_eig.txt") |
| 288 | + minimum_contact_matrix2 = os.path.join( |
| 289 | + "./data/contacts/minimum_work.txt") |
| 290 | + minimum_contact_matrix3 = os.path.join( |
| 291 | + "./data/contacts/minimum_other.txt") |
| 292 | + |
| 293 | + minimum = np.loadtxt(minimum_contact_matrix0) \ |
| 294 | + + np.loadtxt(minimum_contact_matrix1) + \ |
| 295 | + np.loadtxt(minimum_contact_matrix2) + \ |
| 296 | + np.loadtxt(minimum_contact_matrix3) |
| 297 | + |
| 298 | + return minimum |
| 299 | + |
| 300 | + |
| 301 | +def get_population(path): |
| 302 | + """! read population data in list from dataset |
| 303 | + @param path Path to the dataset containing the population data |
| 304 | + """ |
| 305 | + |
| 306 | + with open(path) as f: |
| 307 | + data = json.load(f) |
| 308 | + population = [] |
| 309 | + for data_entry in data: |
| 310 | + population.append(interpolate_age_groups(data_entry)) |
| 311 | + return population |
| 312 | + |
| 313 | + |
| 314 | +if __name__ == "__main__": |
| 315 | + # Store data relative to current file two levels higher. |
| 316 | + path = os.path.dirname(os.path.realpath(__file__)) |
| 317 | + path_output = os.path.join(os.path.dirname(os.path.realpath( |
| 318 | + os.path.dirname(os.path.realpath(path)))), 'data') |
| 319 | + |
| 320 | + path_population = os.path.abspath( |
| 321 | + r"data//pydata//Germany//county_population.json") |
| 322 | + |
| 323 | + input_width = 5 |
| 324 | + label_width = 30 |
| 325 | + num_runs = 10000 |
| 326 | + data = generate_data(num_runs, path_output, path_population, input_width, |
| 327 | + label_width) |
0 commit comments