forked from virginiaequitycenter/va-evictions
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
31 changed files
with
374,479 additions
and
490,525 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,8 +1,6 @@ | ||
.Rhistory | ||
.DS_Store | ||
*.DS_Store | ||
*.Rproj.user | ||
*.Rproj | ||
|
||
civilcases/ | ||
processed-data/ | ||
.Rproj.user | ||
data/ | ||
processed-data/ |
This file was deleted.
Oops, something went wrong.
This file was deleted.
Oops, something went wrong.
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,143 @@ | ||
############################################################## | ||
# Eviction case data cleaning script # | ||
# Authors: Jacob Goldstein-Greenwood, Michele Claibourn # | ||
# GitHub: jacob-gg, mclaibourn # | ||
# Last revised: 2023-02-07 # | ||
############################################################## | ||
|
||
######################## Instructions ######################## | ||
# 1. Check the modifiable user preset variables below | ||
# 2. With those set, the code should run all the way through | ||
# using data in the general format provided by the LSC | ||
case_id_var <- 'c2dp_case_id' | ||
data_directory <- 'data' | ||
output_directory <- 'processed-data' | ||
############################################################## | ||
|
||
# Packages | ||
required <- c('devtools', 'dplyr', 'lubridate', 'virginiaequitycenter/ECtools') | ||
handle_package <- function(pkg) { | ||
if (grepl(x = pkg, pattern = '\\/')) { devtools::install_github(pkg) } | ||
else if (!(pkg %in% installed.packages())) { install.packages(pkg) } | ||
pkg <- sub(x = pkg, pattern = '.+\\/', replacement = '') | ||
library(pkg, character.only = TRUE) | ||
} | ||
lapply(required, function(x) handle_package(x)) | ||
|
||
# Read data | ||
keywords <- c('case', 'defendant', 'hearing', 'judgment', 'plaintiff') | ||
files <- dir(data_directory) | ||
dat_list <- lapply(seq_along(keywords), function(x) read.csv(paste0(data_directory, '/', files[grepl(x = files, pattern = keywords[x])]))) | ||
|
||
# For variable names that are duplicated across data frames, prefix them with the name of their source data frame | ||
var_names <- unlist(sapply(dat_list, function(x) colnames(x)), use.names = F) | ||
duplicated_var_names <- unique(var_names[duplicated(var_names)]) %>% .[. != case_id_var] | ||
dat_list <- lapply(seq_along(dat_list), function(z) { | ||
nms <- colnames(dat_list[[z]]) | ||
nms[nms %in% duplicated_var_names] <- paste0(keywords[z], '_', nms[nms %in% duplicated_var_names]) | ||
colnames(dat_list[[z]]) <- nms | ||
dat_list[[z]] | ||
}) | ||
|
||
# Handle duplicated case IDs and set names of data list elements | ||
########################### Canary ########################### | ||
# As of 2022-02-06, there's >= 1 duplicated case ID in the data; these lines handle that/those, albeit in a brutish way | ||
# This will be updated to a more principled, multi-outcome system down the line | ||
duplicated_case_ids <- unique(dat_list[[which(keywords == 'case')]][[case_id_var]][duplicated(dat_list[[which(keywords == 'case')]][[case_id_var]])]) | ||
dat_list <- lapply(seq_along(dat_list), function(x) eval(parse(text = paste0("dat_list[[", x, "]][(dat_list[[", x, "]][[case_id_var]] %in% duplicated_case_ids) == F, ]")))) | ||
names(dat_list) <- keywords | ||
############################################################## | ||
|
||
# Aggregate | ||
source('functions_aggregation.R') | ||
dat_list[['case']] <- case_aggregator(dat_list[['case']]) | ||
dat_list[['defendant']] <- defendant_aggregator(dat_list[['defendant']]) | ||
dat_list[['plaintiff']] <- plaintiff_aggregator(dat_list[['plaintiff']]) | ||
dat_list[['judgment']] <- judgment_aggregator(dat_list[['judgment']]) | ||
dat_list[['hearing']] <- hearing_aggregator(dat_list[['hearing']]) | ||
|
||
# Merge | ||
cases <- Reduce(function(x, y) merge(x, y, by = case_id_var, all = TRUE), dat_list) | ||
|
||
# Extract years of case filings | ||
cases$filed_year <- extract_year(cases$filed_date, expect_modern = TRUE, return_numeric = FALSE) | ||
|
||
########################### Canary ########################### | ||
# Currently, we only keep cases from 2018-onward | ||
cases$filed_year <- as.numeric(cases$filed_year) | ||
cases <- cases[cases$filed_year >= 2018, ] | ||
############################################################## | ||
|
||
# Extract quarters of case filings | ||
cases$filed_quarter <- assign_quarter(cases$filed_date, return_QX = TRUE) | ||
|
||
# Standardize names | ||
cases$defendant_name <- standardize_name(cases$defendant_name, case_out = 'upper') | ||
cases$plaintiff_name <- standardize_name(cases$plaintiff_name, case_out = 'upper') | ||
|
||
# Correct punctuation spacing in names | ||
cases$defendant_name <- correct_punctuation_spacing(cases$defendant_name) | ||
cases$plaintiff_name <- correct_punctuation_spacing(cases$plaintiff_name) | ||
|
||
# Remove commas before business identifiers in plaintiff names | ||
# Drawn from: https://en.wikipedia.org/wiki/List_of_legal_entity_types_by_country#United_States | ||
# LC, LLC, PLLC, LP, LLP, LLLP, CO, CO OP, COOP, CORP, CP, LTD, INC, PB, PBD, FSB, NA, L3C | ||
cases$plaintiff_name <- stringi::stri_replace_all(cases$plaintiff_name, | ||
regex = ', (?=(P?LL?C|LL?L?P|CO( ?OP|RP)?|CP|LTD|INC|PB?C|FSB|NA|L3C)$)', | ||
replacement = ' ') | ||
|
||
# Trim middle initials | ||
# max_nchar_names <- max(c(max(nchar(cases$defendant_name), max(nchar(cases$plaintiff_name))))) | ||
# pattern <- paste0('(?<=^[A-Za-z ]{1,', max_nchar_names, '}, [A-Za-z ]{1,', max_nchar_names, '}) [A-Za-z]{1}$') | ||
# cases$defendant_name <- stringi::stri_replace_all(cases$defendant_name, regex = pattern, replacement = '') | ||
# cases$plaintiff_name <- stringi::stri_replace_all(cases$plaintiff_name, regex = pattern, replacement = '') | ||
|
||
# Expand common housing acronyms | ||
cases$defendant_name <- expand_shorthand(cases$defendant_name, type = 'housing', case_out = 'upper') | ||
cases$plaintiff_name <- expand_shorthand(cases$plaintiff_name, type = 'housing', case_out = 'upper') | ||
|
||
# Extract ZIP Codes | ||
cases$defendant_zip <- extract_zip(cases$defendant_address, if_multiple = 'first', must_follow_state = TRUE) | ||
cases$plaintiff_zip <- extract_zip(cases$plaintiff_address, if_multiple = 'first', must_follow_state = TRUE) | ||
# Convert non-VA ZIPs to NA | ||
va_zips <- as.character(c(20100:20199, 22000:24699)) # https://en.wikipedia.org/wiki/List_of_ZIP_Code_prefixes | ||
cases$defendant_zip <- ifelse(cases$defendant_zip %in% va_zips, cases$defendant_zip, NA) | ||
cases$plaintiff_zip <- ifelse(cases$plaintiff_zip %in% va_zips, cases$plaintiff_zip, NA) | ||
|
||
# Identify and remove true duplicates (note that this process uses plaintiff_name and defendant_name, which have been cleaned) | ||
duplicate_check_vars <- c('filed_date', 'judgment', 'costs', 'attorney_fees', 'principal_amount', | ||
'other_amount', 'plaintiff_name', 'defendant_name', 'defendant_zip') | ||
cases <- remove_duplicates_df(dat = cases, column_names = duplicate_check_vars, save_removed_rows_as = 'removed') | ||
|
||
# Identify serial cases | ||
source('functions_serial_cases.R') | ||
cases <- id_serials(cases) | ||
|
||
# Identify non-residential defendants | ||
cases$defendant_non_residential <- identify_non_residential(cases$defendant_name) | ||
########################### Canary ########################### | ||
# Un-flag cases with "OCCUPANT(S)" in the primary defendant name (likely residential, e.g., "ANY AND ALL OCCUPANTS") | ||
cases$defendant_non_residential <- ifelse(grepl(x = cases$defendant_name, pattern = '(?i)\\boccupants?\\b'), FALSE, cases$defendant_non_residential) | ||
# Un-flag cases with "ESTATE OF" in the defendant names (likely residential, e.g., "ESTATE OF JANE SMITH") | ||
cases$defendant_non_residential <- ifelse(grepl(x = cases$defendant_name, pattern = '(?i)\\bestate of?\\b'), FALSE, cases$defendant_non_residential) | ||
############################################################## | ||
|
||
# Write out resulting data | ||
if (dir.exists(output_directory) == FALSE) { dir.create(output_directory) } | ||
write.csv(cases, file = paste0(output_directory, '/cases.txt'), row.names = FALSE) | ||
cases_residential_only <- cases[cases$defendant_non_residential == FALSE, ] | ||
write.csv(cases_residential_only, file = paste0(output_directory, '/cases_residential_only.txt'), row.names = FALSE) | ||
|
||
# Log file | ||
out <- c('run_date' = as.character(Sys.Date()), | ||
'time_finished' = format(Sys.time(), '%R'), | ||
'n_residential_cases' = nrow(cases_residential_only), | ||
'n_cases' = nrow(cases), | ||
'min_year_residential_cases' = min(cases_residential_only$filed_year, na.rm = T), | ||
'max_year_residential_cases' = max(cases_residential_only$filed_year, na.rm = T), | ||
'n_serial_residential_cases' = sum(cases_residential_only$serial_filing, na.rm = T), | ||
'n_true_duplicates_removed' = nrow(removed), | ||
'n_duplicate_case_ids_removed' = length(duplicated_case_ids), | ||
'duplicate_case_ids_removed' = paste0(duplicated_case_ids, collapse = ', ')) | ||
writeLines(con = paste0('log.txt'), text = paste0(names(out), ': ', out)) | ||
|
Empty file.
This file was deleted.
Oops, something went wrong.
Oops, something went wrong.