Convert CEL (Common Expression Language) expressions to PostgreSQL SQL
cel2sql makes it easy to build dynamic SQL queries using CEL expressions. Write type-safe, expressive filters in CEL and automatically convert them to PostgreSQL-compatible SQL.
go get github.com/spandigital/cel2sql/v3package main
import (
"fmt"
"github.com/google/cel-go/cel"
"github.com/spandigital/cel2sql/v3"
"github.com/spandigital/cel2sql/v3/pg"
)
func main() {
// 1. Define your database table schema
userSchema := pg.NewSchema([]pg.FieldSchema{
{Name: "name", Type: "text"},
{Name: "age", Type: "integer"},
{Name: "active", Type: "boolean"},
})
// 2. Create CEL environment
env, _ := cel.NewEnv(
cel.CustomTypeProvider(pg.NewTypeProvider(map[string]pg.Schema{
"User": userSchema,
})),
cel.Variable("user", cel.ObjectType("User")),
)
// 3. Write your filter expression in CEL
ast, _ := env.Compile(`user.age >= 18 && user.active`)
// 4. Convert to SQL
sqlWhere, _ := cel2sql.Convert(ast)
fmt.Println(sqlWhere)
// Output: user.age >= 18 AND user.active IS TRUE
// 5. Use in your query
query := "SELECT * FROM users WHERE " + sqlWhere
}β Type-Safe: Catch errors at compile time, not runtime β PostgreSQL 17: Fully compatible with the latest PostgreSQL β Rich Features: JSON/JSONB, arrays, regex, timestamps, and more β Well-Tested: 100+ tests including integration tests with real PostgreSQL β Easy to Use: Simple API, comprehensive documentation β Secure by Default: Built-in protections against SQL injection and ReDoS attacks β Performance Tracked: Continuous benchmark monitoring to prevent regressions
cel2sql includes comprehensive security protections:
- π‘οΈ Field Name Validation - Prevents SQL injection via field names
- π JSON Field Escaping - Automatic quote escaping in JSON paths
- π« ReDoS Protection - Validates regex patterns to prevent catastrophic backtracking
- π Recursion Depth Limits - Prevents stack overflow from deeply nested expressions (default: 100)
- π SQL Output Length Limits - Prevents memory exhaustion from extremely large SQL queries (default: 50,000 chars)
- π’ Byte Array Length Limits - Prevents memory exhaustion from large hex-encoded byte arrays (max: 10,000 bytes)
- β±οΈ Context Timeouts - Optional timeout protection for complex expressions
All security features are enabled by default with zero configuration required.
cel2sql supports optional advanced features via functional options:
import (
"context"
"log/slog"
"github.com/spandigital/cel2sql/v3"
)
// Basic conversion
sql, err := cel2sql.Convert(ast)
// With schemas for JSON/JSONB support
sql, err := cel2sql.Convert(ast,
cel2sql.WithSchemas(schemas))
// With context for timeouts
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
defer cancel()
sql, err := cel2sql.Convert(ast,
cel2sql.WithContext(ctx),
cel2sql.WithSchemas(schemas))
// With logging for observability
logger := slog.New(slog.NewJSONHandler(os.Stdout, nil))
sql, err := cel2sql.Convert(ast,
cel2sql.WithContext(ctx),
cel2sql.WithSchemas(schemas),
cel2sql.WithLogger(logger))Available Options:
WithSchemas(map[string]pg.Schema)- Provide table schemas for JSON detectionWithContext(context.Context)- Enable cancellation and timeoutsWithLogger(*slog.Logger)- Enable structured loggingWithMaxDepth(int)- Set custom recursion depth limit (default: 100)
cel2sql can analyze your CEL queries and recommend database indexes to optimize performance. The AnalyzeQuery() function returns both the converted SQL and actionable index recommendations.
AnalyzeQuery() examines your CEL expression and detects patterns that would benefit from specific PostgreSQL index types:
- JSON/JSONB path operations (
->>, ?) β GIN indexes - Array operations (comprehensions,
INclauses) β GIN indexes - Regex matching (
matches()) β GIN indexes withpg_trgmextension - Comparison operations (
==, >, <, >=, <=) β B-tree indexes
sql, recommendations, err := cel2sql.AnalyzeQuery(ast,
cel2sql.WithSchemas(schemas))
if err != nil {
log.Fatal(err)
}
// Use the generated SQL
rows, err := db.Query("SELECT * FROM users WHERE " + sql)
// Review and apply index recommendations
for _, rec := range recommendations {
fmt.Printf("Column: %s\n", rec.Column)
fmt.Printf("Type: %s\n", rec.IndexType)
fmt.Printf("Reason: %s\n", rec.Reason)
fmt.Printf("Execute: %s\n\n", rec.Expression)
// Apply the recommendation
// _, err := db.Exec(rec.Expression)
}// Query with multiple index-worthy patterns
celExpr := `person.age > 18 &&
person.email.matches(r"@example\.com$") &&
person.metadata.verified == true`
ast, _ := env.Compile(celExpr)
sql, recs, _ := cel2sql.AnalyzeQuery(ast, cel2sql.WithSchemas(schemas))
// Generated SQL:
// person.age > 18 AND person.email ~ '@example\.com$'
// AND person.metadata->>'verified' = 'true'
// Recommendations:
// 1. CREATE INDEX idx_person_age_btree ON table_name (person.age);
// Reason: Comparison operations benefit from B-tree for range queries
//
// 2. CREATE INDEX idx_person_email_gin_trgm ON table_name
// USING GIN (person.email gin_trgm_ops);
// Reason: Regex matching benefits from GIN index with pg_trgm
//
// 3. CREATE INDEX idx_person_metadata_gin ON table_name
// USING GIN (person.metadata);
// Reason: JSON path operations benefit from GIN index- Development: Discover which indexes your queries need
- Performance tuning: Identify missing indexes causing slow queries
- Production monitoring: Analyze user-generated filter expressions
See examples/index_analysis/ for a complete working example.
cel2sql supports parameterized queries (prepared statements) for improved performance, security, and monitoring.
π Performance - PostgreSQL caches query plans for parameterized queries, enabling plan reuse across executions π Security - Parameters are passed separately from SQL, providing defense-in-depth SQL injection protection π Monitoring - Same query pattern appears in logs/metrics, making analysis easier
// Convert to parameterized SQL
result, err := cel2sql.ConvertParameterized(ast)
if err != nil {
log.Fatal(err)
}
fmt.Println(result.SQL) // "user.age > $1 AND user.name = $2"
fmt.Println(result.Parameters) // [18 "John"]
// Execute with database/sql
rows, err := db.Query(
"SELECT * FROM users WHERE " + result.SQL,
result.Parameters...,
)Parameterized (values become placeholders):
- β
String literals:
'John'β$1 - β
Numeric literals:
42,3.14β$1,$2 - β
Byte literals:
b"data"β$1
Kept Inline (for query plan optimization):
- β
TRUE,FALSE- Boolean constants - β
NULL- Null values
PostgreSQL's query planner optimizes better when it knows boolean and null values at plan time.
celExpr := `user.age > 18 && user.active == true && user.name == "John"`
ast, _ := env.Compile(celExpr)
// Non-parameterized (inline values)
sql, _ := cel2sql.Convert(ast)
// SQL: user.age > 18 AND user.active IS TRUE AND user.name = 'John'
// Parameterized (placeholders + parameters)
result, _ := cel2sql.ConvertParameterized(ast)
// SQL: user.age > $1 AND user.active IS TRUE AND user.name = $2
// Parameters: [18 "John"]
// Note: TRUE is kept inline for query plan efficiencyFor maximum performance with repeated queries, use prepared statements:
result, _ := cel2sql.ConvertParameterized(ast)
// Prepare once
stmt, err := db.Prepare("SELECT * FROM users WHERE " + result.SQL)
defer stmt.Close()
// Execute multiple times with different parameters
rows1, _ := stmt.Query(25) // age > 25
rows2, _ := stmt.Query(30) // age > 30
rows3, _ := stmt.Query(35) // age > 35 (reuses cached plan!)See the parameterized example for a complete working demo with PostgreSQL integration.
// CEL: Simple comparison
user.age > 21 && user.country == "USA"
// SQL: user.age > 21 AND user.country = 'USA'// CEL: String operations
user.email.startsWith("admin") || user.name.contains("John")
// SQL: user.email LIKE 'admin%' OR POSITION('John' IN user.name) > 0// CEL: Date comparisons
user.created_at > timestamp("2024-01-01T00:00:00Z")
// SQL: user.created_at > CAST('2024-01-01T00:00:00Z' AS TIMESTAMP WITH TIME ZONE)// CEL: JSON field access
user.preferences.theme == "dark"
// SQL: user.preferences->>'theme' = 'dark'// CEL: Check if all items match
user.scores.all(s, s >= 60)
// SQL: NOT EXISTS (SELECT 1 FROM UNNEST(user.scores) AS s WHERE NOT (s >= 60))cel2sql supports PostgreSQL multi-dimensional arrays (1D, 2D, 3D, 4D+) with automatic dimension detection:
// Define schema with multi-dimensional arrays
schema := pg.NewSchema([]pg.FieldSchema{
{Name: "tags", Type: "text", Repeated: true, Dimensions: 1}, // 1D: text[]
{Name: "matrix", Type: "integer", Repeated: true, Dimensions: 2}, // 2D: integer[][]
{Name: "cube", Type: "float", Repeated: true, Dimensions: 3}, // 3D: float[][][]
})
// CEL: size() automatically uses correct dimension
ast, _ := env.Compile("size(data.matrix) > 0")
// SQL: COALESCE(ARRAY_LENGTH(data.matrix, 2), 0) > 0
// Or load dimensions automatically from database
provider, _ := pg.NewTypeProviderWithConnection(ctx, connString)
provider.LoadTableSchema(ctx, "products") // Dimensions detected from schemaDimension Detection:
- Detects dimensions from PostgreSQL type strings (
integer[][],_int4[]) - Works with both bracket notation and underscore notation
- Defaults to 1D for backward compatibility when no schema is provided
- π Getting Started Guide - Step-by-step tutorial
- π§ JSON/JSONB Support - Working with JSON data
- π― Array Comprehensions - Advanced array operations
- π Regex Matching - Pattern matching with regex
- π‘οΈ Security Guide - Security features and best practices
- π Operators Reference - Complete operator list
- π‘ Examples - More code examples
| Feature | CEL Example | PostgreSQL SQL |
|---|---|---|
| Comparisons | age > 18 |
age > 18 |
| Logic | active && verified |
active IS TRUE AND verified IS TRUE |
| Strings | name.startsWith("A") |
name LIKE 'A%' |
| Lists | "admin" in roles |
'admin' IN UNNEST(roles) |
| Multi-Dim Arrays | size(matrix) > 0 |
COALESCE(ARRAY_LENGTH(matrix, 2), 0) > 0 |
| JSON | data.key == "value" |
data->>'key' = 'value' |
| Regex | email.matches(r".*@test\.com") |
email ~ '.*@test\.com' |
| Dates | created_at.getFullYear() == 2024 |
EXTRACT(YEAR FROM created_at) = 2024 |
| Conditionals | age > 30 ? "senior" : "junior" |
CASE WHEN age > 30 THEN 'senior' ELSE 'junior' END |
cel2sql automatically converts CEL's RE2 regex patterns to PostgreSQL POSIX regex. While most common patterns work, some RE2 features are not supported and will return errors:
Supported:
- β
Basic patterns:
.*,[a-z]+,\d{3} - β
Case-insensitive flag:
(?i)patternβ Uses~*operator - β
Character classes:
\d,\w,\s(converted to POSIX) - β
Non-capturing groups:
(?:...)(converted to regular groups)
Unsupported:
- β Lookahead assertions:
(?=...),(?!...) - β Lookbehind assertions:
(?<=...),(?<!...) - β Named capture groups:
(?P<name>...) - β Inline flags (except
(?i)):(?m),(?s),(?-i), etc.
ReDoS Protection: cel2sql includes automatic validation to prevent Regular Expression Denial of Service attacks:
- Pattern length limited to 500 characters
- Nested quantifiers blocked:
(a+)+β - Quantified alternation blocked:
(a|a)*β - Capture group limit: 20 maximum
- Nesting depth limit: 10 levels
See Regex Matching documentation for complete details, safe pattern examples, and performance tips.
| CEL Type | PostgreSQL Type |
|---|---|
int |
bigint |
double |
double precision |
bool |
boolean |
string |
text |
bytes |
bytea |
list |
ARRAY |
timestamp |
timestamp with time zone |
duration |
INTERVAL |
Load table schemas directly from your PostgreSQL database:
// Connect to database and load schema
provider, _ := pg.NewTypeProviderWithConnection(ctx, "postgres://user:pass@localhost/db")
defer provider.Close()
// Load table schema dynamically
provider.LoadTableSchema(ctx, "users")
// Use with CEL
env, _ := cel.NewEnv(
cel.CustomTypeProvider(provider),
cel.Variable("user", cel.ObjectType("users")),
)See Getting Started Guide for more details.
- Go 1.24 or higher
- PostgreSQL 17 (also compatible with PostgreSQL 15+)
Contributions are welcome! Please see CONTRIBUTING.md for guidelines.
Apache 2.0 - See LICENSE for details.
- CEL-Go - Common Expression Language implementation in Go
- CEL Spec - Common Expression Language specification
- π Check the documentation
- π¬ Open an issue
- π Star the repo if you find it useful!