Skip to content

SHILAIFU/PSMNet-Tensorflow

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PSMNet-Tensorflow

=======

PMSNet-Tensorflow

Pyramid Stereo Matching Network

根据 "Pyramid Stereo Matching Network" paper (CVPR 2018) 在源代码基础上使用tensorflow进行移植(源代码使用的pytorch)

Citation

@inproceedings{chang2018pyramid,
  title={Pyramid Stereo Matching Network},
  author={Chang, Jia-Ren and Chen, Yong-Sheng},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={5410--5418},
  year={2018}
}

Contents

  1. Introduction
  2. Usage
  3. Results
  4. Contacts

Introduction

Recent work has shown that depth estimation from a stereo pair of images can be formulated as a supervised learning task to be resolved with convolutional neural networks (CNNs). However, current architectures rely on patch-based Siamese networks, lacking the means to exploit context information for finding correspondence in illposed regions. To tackle this problem, we propose PSMNet, a pyramid stereo matching network consisting of two main modules: spatial pyramid pooling and 3D CNN. The spatial pyramid pooling module takes advantage of the capacity of global context information by aggregating context in different scales and locations to form a cost volume. The 3D CNN learns to regularize cost volume using stacked multiple hourglass networks in conjunction with intermediate supervision.

Usage

Dependencies

目前已经完成的工作

  • 移植了KITTI2012数据集的读取工作
  • 移植了preprocess中的部分函数
  • 移植了KITTILoader,满足基本的数据读取
  • 在tensorflow框架下完成了CNN子模块
  • 在tensorflow框架下完成了SPP子模块
  • 在tensorflow框架下完成了CNN3D子模块(这里只重写了论文中提到的stacked hourglass结构)
  • 在tensorflow框架下完成了视差回归和损失函数
  • 对main函数进行改写,满足输入输出需求

接下来的的工作

  • 完善整体的model
  • 加入论文中basic的模型
  • 加入模型的保存和读取模块
  • 加入tensorboard可视化需要的操作
  • 完善输入和输出
  • 整体进行训练

About

Pyramid Stereo Matching Network-tensorflow

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%