This is the code for the paper AlignKT: Explicitly Modeling Knowledge State for Knowledge Tracing with Ideal State Alignment. See our paper here(the link will be updated here).
torch>=2.1.0
--dataset_name:
default value=assist2009, value={algebra2005, nips_task34}
--d_model:
default value=384(for AS09), value={256(for AL05, NIPS34)}
--d_ff:
default value=1024(for AS09, NIPS34), value={768(for AL05)}
--n_heads:
default value=4(for AS09), value={8(for AL05, NIPS34)}
--drop_out:
default value=0.25(for AS09), value={0.2(for AL05, NIPS34)}
--batch_size:
default value=128(for AS09), value={32(for AL05, NIPS34)}
python main.py --seed 42
The citation information for the paper will be updated here.
The code for model training and real-scenario evaluation is sourced from pykt-team/pykt-toolkit: pyKT: A Python Library to Benchmark Deep Learning based Knowledge Tracing Models