Skip to content

RyanLuohaha/RWKV-PEFT-WEB

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RWKV-PEFTRWKV-PEFT

[ English | 中文 ]

RWKV-PEFT is the official implementation for efficient parameter fine-tuning of RWKV5/6 models, supporting various advanced fine-tuning methods across multiple hardware platforms.

Installation

Important

Installation is mandatory.

git clone https://github.com/JL-er/RWKV-PEFT.git
cd RWKV-PEFT
pip install -r requirements.txt

Web Run

Tip

If you are using a cloud server (such as Vast or AutoDL), you can start the Streamlit service by referring to the help documentation on the cloud server's official website.

streamlit run web/app.py

Table of Contents

Hardware Requirements

The following shows memory usage when using an RTX 4090 (24GB VRAM) + 64GB RAM (with parameters: --strategy deepspeed_stage_1 --ctx_len 1024 --micro_bsz 1 --lora_r 64):

Model Size Full Finetuning LoRA/PISSA QLoRA/QPISSA State Tuning
RWKV6-1.6B OOM 7.4GB 5.6GB 6.4GB
RWKV6-3B OOM 12.1GB 8.2GB 9.4GB
RWKV6-7B OOM 23.7GB* 14.9GB** 18.1GB

Note:

  • OOM when batch size is 8 ** Requires 19.5GB VRAM when batch size is 8

Quick Start

  1. Install dependencies:
pip install -r requirements.txt
  1. Run example script:
sh scripts/run_lora.sh

Note: Please refer to the RWKV official tutorial for detailed data preparation

  1. Start with web GUI:

Tip

If you're using cloud services (such as Vast or AutoDL), you'll need to enable web port access according to your service provider's instructions.

streamlit run web/app.py

Main Features

  • Multiple Fine-tuning Methods: Supports LoRA, PISSA, Bone, State Tuning, etc.
  • Quantized Training: Supports INT8/NF4 quantization for significant VRAM reduction
  • Flexible Data Loading: Supports various data sampling strategies
  • Memory Optimization: Multiple DeepSpeed strategies available
  • Loss Masking: Supports loss masking for QA dialogue and padding
  • Infinite Context Training: Supports infctx training mode, utilizing RWKV's constant memory usage advantage to train with "infinite" context under limited resources
  • Multi-Hardware Support: RWKV-PEFT officially supports NVIDIA, AMD, Moore Threads, Musa, Iluvatar CoreX, and other hardware platforms. Ascend NPU implementation will be available later. Note: Currently we only support issues for NVIDIA hardware
  • RWKV-FLA Efficient Training: rwkv-fla is a Triton-based linear attention operator that can run efficiently on hardware without CUDA support

Detailed Configuration

1. PEFT Method Selection

--peft bone --bone_config $lora_config

2. Training Parts Selection

--train_parts ["time", "ln"]
  • Available parts: emb, head, time, ln
  • Default training: time, ln (small parameter ratio)

3. Quantized Training

--quant int8/nf4

4. Infinite Length Training (infctx)

--train_type infctx --chunk_ctx 512 --ctx_len 2048
  • ctx_len: Target training length
  • chunk_ctx: Slice length, must be smaller than ctx_len

5. Data Loading Strategy

--dataload pad
  • get: Default random sampling (RWKV-LM style)
  • pad: Fixed-length padding sampling
  • only: Single data sampling (only supports bsz=1)

6. DeepSpeed Strategy

--strategy deepspeed_stage_1

Available strategies:

  • deepspeed_stage_1: Preferred option
  • deepspeed_stage_2/3: For large models or full fine-tuning
  • deepspeed_stage_2_offload
  • deepspeed_stage_3_offload

7. FLA Operator

By default, RWKV-PEFT uses custom CUDA kernels for wkv computation. However, you can use --fla to enable the Triton kernel:

--fla

GPU Support

  • NVIDIA: CUDA
  • Intel, Moore Threads, Musa, Iluvatar CoreX: FLA, which means you need to pass --fla
  • Ascend: CANN (soon)

Citation

If you find this project helpful, please cite our work:

@misc{kang2024boneblockaffinetransformation,
      title={Bone: Block Affine Transformation as Parameter Efficient Fine-tuning Methods for Large Language Models},
      author={Jiale Kang},
      year={2024},
      eprint={2409.15371},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2409.15371}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 86.5%
  • Cuda 9.9%
  • C++ 2.0%
  • Shell 1.6%