High-throughput parallel file system cleaner designed for efficiently eliminating millions of old files as close to simultaneously as possible.
- 🚀 Parallel processing with multi-threading
- 🎯 Precision targeting of files by age
- 🔍 Dry-run mode for operation verification
- 📝 Kubernetes-friendly JSON logging
- 🔒 Safe handling of sensitive file systems
- ⚙️ Configurable age thresholds
- 🐳 Production-ready container with security best practices
To automate regular cleanups using beeper-purge in Kubernetes, you can configure a Kubernetes CronJob that runs at a specified interval. This example mounts an existing PersistentVolumeClaim (PVC) to the cron job container.
Create a CronJob Manifest: Replace /data with your target path in the volume and adjust schedule and other parameters as needed.
apiVersion: batch/v1
kind: CronJob
metadata:
name: beeper-purge-cron
spec:
schedule: "0 0 * * *" # Run daily at midnight
jobTemplate:
spec:
template:
spec:
containers:
- name: beeper-purge
image: ghcr.io/RiveryIO/beeper-purge:latest
args:
- "/data"
- "--max-age-hours"
- "36"
volumeMounts:
- name: data-volume
mountPath: /data
restartPolicy: OnFailure
volumes:
- name: data-volume
persistentVolumeClaim:
claimName: your-existing-pvc-name # Replace with your PVC name
docker pull ghcr.io/RiveryIO/beeper-purge:latest
# Always verify targets first with dry run
docker run -v /path/to/clean:/data ghcr.io/RiveryIO/beeper-purge:latest \
/data --dry-run --max-age-hours 36
# Execute purge operation
docker run -v /path/to/clean:/data ghcr.io/RiveryIO/beeper-purge:latest \
/data --max-age-hours 36
pip install beeper-purge
# Show help
beeperpurge --help
# Reconnaissance (dry run)
beeperpurge /path/to/clean --dry-run --max-age-hours 36
# Execute purge
beeperpurge /path/to/clean --max-age-hours 36 --workers 16
# Show version
beeperpurge --version
$ beeperpurge /data --dry-run
{
"timestamp": "2024-11-02T10:15:30,123",
"level": "INFO",
"message": "Starting purge operation",
"extra_fields": {
"root_path": "/data",
"dry_run": true,
"max_workers": 16
}
}
...
{
"timestamp": "2024-11-02T10:15:35,456",
"level": "INFO",
"message": "Operation completed",
"extra_fields": {
"files_processed": 1000000,
"files_targeted": 150000,
"duration_seconds": 5.33,
"elimination_rate": 187617
}
}
- 🛡️ Dry-run mode for target verification
- 🔗 No symlink following
- 🚨 Comprehensive error handling
- 👤 Non-root container execution
- ✅ Extensive test coverage
- Efficiently handles millions of files
- Memory usage scales linearly with worker count
- I/O optimized operations
- Standard systems: 8-16 workers
- High-performance systems: 16-32 workers
- Adjust based on:
- Available CPU cores
- I/O capabilities
- File system response times
# Clone repository
git clone https://github.com/RiveryIO/BeeperPurge.git
cd beeperpurge
# Create virtual environment
python -m venv venv
source venv/bin/activate # or `venv\Scripts\activate` on Windows
# Install development dependencies
pip install -e ".[dev]"
# Full test suite
pytest
# Coverage analysis
pytest --cov=beeper_purge
# Specific test execution
pytest tests/test_cleaner.py
docker build -t beeper-purge .
- Fork the repository
- Create your feature branch (
git checkout -b feat/enhancement
). Valid branch prefixes are feat,fix,chore. - Commit your changes (
git commit -m 'Add enhancement'
) - Push to the branch (
git push origin feat/enhancement
) - Open a Pull Request
This project is licensed under the MIT License - see the LICENSE file for details.