Skip to content

RingBDStack/LaT-IB

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AAAI26 | Is the Information Bottleneck Robust Enough? Towards Label-Noise Resistant Information Bottleneck Learning

This repository provides the official implementation of LaT-IB, a method designed to address a key limitation of the classical Information Bottleneck (IB) framework: its vulnerability to label noise.

LaT-IB reformulates the IB objective in the latent representation space and introduces a new principled objective that improves robustness under noisy labels. Furthermore, we provide upper and lower bound analysis to theoretically justify the information meaning and effectiveness of our formulation.

Framework Framework

We conduct extensive experiments on two representative tasks to validate LaT-IB:

  • Image Classification
  • Graph Node Classification

The results consistently demonstrate that LaT-IB achieves better robustness and generalization under noisy supervision.

./
├── IC (image classification, LaT-VIB)
│   ├── LaT_VIB.py
│   ├── README.md
│   ├── attack.py
│   ├── data
│   │   ├── animal_10N.py
│   │   ├── cifar.py
│   │   ├── datasets.py
│   │   └── utils.py
│   ├── log
│   ├── model
│   │   ├── __init__.py
│   │   ├── modelIB.py
│   │   └── resnet.py
│   ├── test_attack.py
│   ├── utils
│   │   ├── fmix.py
│   │   ├── loss.py
│   │   ├── mix.py
│   │   └── randaug.py
│   └── visual.py
├── NC (ndoe classification, LatT-GIB)
│   ├── LaT_GIB.py
│   ├── Noise_about.py
│   ├── README.md
│   ├── arg.py
│   ├── data
│   ├── data_loader.py
│   ├── log
│   ├── loss.py
│   ├── model.py
│   └── utils.py
├── README.md
└── tree.py

Environment requirement

IC

  • torchvision
  • PIL
  • sklearn
  • matplotlib (optional)

NC

  • torch_geometric
  • torch_sparse

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages