Opinionated core standards, schemas, and audits for production-grade AI-assisted software projects.
This repository is the canonical rulebook and enforcement layer for designing, building, and auditing AI projects of any size. It exists to prevent the most common failure mode in AI development: unstructured, non-auditable systems that collapse as they grow.
AI Core Standards defines what “done right” means for prompts, models, data, evaluations, tooling, and documentation—and provides automated audits to enforce it.
This repository is not a project template and should not be copied verbatim into application repos. It is intended to be referenced, audited against, or included as a submodule.
Most AI projects fail after the demo.
Not because the model is wrong—but because everything around the model is unstructured.
Common failure modes this repository explicitly prevents:
- Prompts buried in code with no versioning or review
- Silent model changes with no audit trail
- Outputs that cannot be traced back to inputs, prompts, or configs
- Ad-hoc evaluation scripts that can’t be repeated
- AI-generated codebases that no one can safely modify six weeks later
AI Core Standards exists to eliminate those failure modes.
This repository enforces a simple rule:
If an AI system cannot be audited, reproduced, or explained, it is not production-ready.
To make that practical, the standards here:
- Treat prompts, models, evaluations, and data layouts as first-class configuration
- Define schemas so “valid” is machine-checkable
- Provide audits so compliance is provable, not aspirational
- Separate governance (core standards) from implementation (project templates)
This is not about style. This is about preventing AI-assisted projects from collapsing under their own entropy.
This is:
- A governance framework for AI-assisted development
- A set of enforceable standards backed by schemas and audits
- A cross-language foundation (Python, Node, TS, C/C++)
- A control plane for prompt, model, and data discipline
This is not:
- A framework (no runtime lock-in)
- A boilerplate app or starter project
- A single “one-size-fits-all” template
AI Core Standards is designed as a control plane, not a framework.
┌──────────────────────────────────────────────┐
│ AI CORE STANDARDS │
│ (Governance & Enforcement – This Repo) │
│ │
│ ┌───────────────┐ ┌────────────────────┐ │
│ │ docs/ │ │ schemas/ │ │
│ │ - rules │ │ - prompts │ │
│ │ - structure │ │ - models │ │
│ │ - reviews │ │ - evals │ │
│ │ │ │ - outputs metadata │ │
│ └───────────────┘ └────────────────────┘ │
│ │
│ ┌────────────────────────────────────────┐ │
│ │ scripts/ │ │
│ │ - audits (structure, data, docs, LLM) │ │
│ │ - validators (AJV, Pydantic) │ │
│ │ - prompt extract / merge │ │
│ │ - consolidated checks │ │
│ └────────────────────────────────────────┘ │
└──────────────────────────────────────────────┘
▲
│ enforced by
│ audits + schemas
│
┌──────────────────────────────────────────────┐
│ PROJECT TEMPLATES │
│ (Thin, Type-Specific Overlays) │
│ │
│ python-cli | python-service | node-cli | … │
│ │
│ - minimal skeleton │
│ - language/tooling defaults │
│ - references core standards │
└──────────────────────────────────────────────┘
▲
│ applied to
│
┌──────────────────────────────────────────────┐
│ AI PROJECTS │
│ (Your Actual Repositories) │
│ │
│ - business logic │
│ - models + prompts (config/) │
│ - data + outputs (data/) │
│ - evaluations │
│ │
│ Audited continuously against core rules │
└──────────────────────────────────────────────┘
Authoritative, human-readable standards. These define the rules audits enforce.
- Prompting standards
- Project structure
- Data organization & traceability
- Schema & validation philosophy
- Linting and CI expectations
- AI project review checklist
JSON Schemas that formalize AI configuration and artifacts:
- Models (
models.schema.json) - Prompts (
prompts.schema.json) - Evaluations (
eval_config.schema.json) - Run outputs / metadata (
outputs_metadata.schema.json) - (Optional) project-level metadata and future extensions
These schemas are consumed by both Node (AJV) and Python (Pydantic) validators.
Baseline reference artifacts, not full applications:
- Canonical
config/examples (models, prompts) - Standard data layout
- Minimal files intended to be overlaid by project templates
Templates here are intentionally thin and framework-agnostic.
Audit, validation, and migration tooling, including:
audit_ai_project.py– core structure complianceaudit_data_layout.py– data layout & output traceabilityaudit_docs.py– documentation presence & README linkageaudit_llm_usage.py– detection of raw / non-standard LLM callsaudit_tooling.py– CI, linting, and language-aware tooling checksajv-validate.mjs– JSON Schema validation (Node/AJV)validate_config.py– JSON Schema + Pydantic validation (Python)prompt_extract.py– extract inline prompts from codeprompt_merge.py– merge core/template/project prompt layersrz_ai_check.py– consolidated audit runnerfix_audit_findings.py– orchestrate audits and guide remediation
Usage terms for the entire standards set.
- Core Standards are immutable from the project’s point of view
- Projects conform to them; they do not fork them.
- Templates are thin
- They help you start, not redefine rules.
- Audits are the source of truth
- “Looks fine” is irrelevant.
- If the audit fails, the project is non-compliant.
Think of this system like ISO standards + automated inspectors:
- Docs = the written standard
- Schemas = the formal specification
- Audits = the inspectors
- Templates = convenience tooling, not authority
This is why the repo scales across:
- languages,
- frameworks,
- deployment models,
- and AI providers.
Read:
docs/AI_GOVERNANCE_RULES.mddocs/STANDARDS_SCOPE.mddocs/PROJECT_STRUCTURE.mddocs/AI_PROMPTING_STANDARDS.mddocs/AI_DOCSTRINGS.md
Choose an appropriate project template / archetype (CLI, service, library, RAG app, hardware-facing app).
Overlay template files while keeping core standards intact.
Validate early:
python scripts/rz_ai_check.pyAdd this repository alongside the target project in a multi-root workspace.
Run audits:
python scripts/audit_ai_project.py
node scripts/ajv-validate.mjs
python scripts/validate_config.py --json
python scripts/rz_ai_check.py --target-root <path>Use Copilot with the standards repo open to fix findings against canonical rules, not guesses.
Re-run audits until compliant.
The same checks are expected to run locally and in CI.
- Python: ruff, mypy, pytest
- Node/TS: eslint, tsc --noEmit
- Docs: vale, markdownlint
- Configs: yamllint, JSON Schema (AJV)
npm ci
python -m pip install -r requirements-dev.txt
pre-commit run --all-files- Structure beats cleverness
- Prompts are configuration, not inline strings
- Every output must be traceable
- Schemas first, code second
- Audits define “done”
If an AI system cannot be audited, reproduced, or explained, it is not production-ready.
Treat this repository as a living standard.
Any new rule must include:
- Documentation
- Schema updates (if applicable)
- Audit logic
Keep docs, templates, and automation in sync.
Submit PRs with a clear rationale: what failure mode does this prevent?