forked from BlackSamorez/mipt_lab
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request BlackSamorez#46 from intex2dx/master
Лаба 1.4.5. Подробно расписана теор. часть.
- Loading branch information
Showing
9 changed files
with
517 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,46 @@ | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
|
||
|
||
def xi2(x,y, y_err): | ||
#y = a + bx | ||
N = len(x) | ||
avx = sum(x/(y_err**2))/sum(1/(y_err**2)) | ||
avy = sum(y/(y_err**2))/sum(1/(y_err**2)) | ||
av2x = sum(x*x/(y_err**2))/sum(1/(y_err**2)) | ||
av2y = sum(y*y/(y_err**2))/sum(1/(y_err**2)) | ||
R_xy = (sum(x*y/(y_err**2))/sum(1/(y_err**2))-avx*avy) | ||
S_x = av2x - avx**2 | ||
S_y = av2y - avy**2 | ||
b = R_xy/S_x | ||
a = avy - b * avx | ||
r = R_xy/(np.sqrt(S_x*S_y)) | ||
delta_b = np.sqrt(1/(N-2)) * np.sqrt(S_y/S_x - b**2) | ||
delta_a = delta_b * np.sqrt(av2x) | ||
f = a + b * x | ||
xi = sum(((y-f)/y_err)**2) | ||
return a, b, delta_a, delta_b, xi, r | ||
|
||
T = np.array([10.3, 15.1, 19.9, 23.2, 28.0]) | ||
u2 = np.array([183.10, 261.0, 341.1, 396.0, 478.7]) | ||
delta_u2 = np.array([0.8, 1.0, 0.7, 0.8, 1.3]) | ||
a, b, delta_a, delta_b, xi, r = xi2(T, u2, delta_u2) | ||
plt.errorbar(T, u2, delta_u2, [0]*5, ls='none', fmt='o-', elinewidth=2, markersize=4, color='black', capsize=2) | ||
plt.xlabel(r"$T$, Н") | ||
plt.ylabel(r'$u^2, 10^{2} \cdot м^2/с^2$') | ||
T1 = np.array([9, 10.3, 15.1, 19.9, 23.2, 28.0, 30]) | ||
u2_normal = a + b * T1 | ||
print(a) | ||
print(b) | ||
print(delta_a) | ||
print(delta_b) | ||
print(r) | ||
print(xi/3) | ||
plt.plot(T1, u2_normal, color='red', linewidth=1, label=r'''$u^2(T) = (11 \pm 2)\cdot 10^2 + (16.61 \pm 0.10) \cdot T$ | ||
$r = 0.99994$ | ||
$\frac{\chi^2}{d.o.f.} = 2.27$ | ||
''') | ||
plt.grid(which='major', | ||
color = 'k') | ||
plt.legend() | ||
plt.show() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,11 @@ | ||
n;nu;nu;nu;nu;nu | ||
1;134.6;161.5;186.7;201.4;223 | ||
2;271.2;325;373.5;404.3;444 | ||
3;405.3;488.7;563;607.5;667.5 | ||
4;543.6;653.6;750.4;810.4;891.6 | ||
5;681.9;811.9;940.3;1013.5;1113 | ||
6;819.3;982.4;1129.6;1215;1338 | ||
7;957.1;1149;1317.5;1418;1559 | ||
8;1096;1313;1505;1622;1783 | ||
9;1238.4;1479;1695;1825;2008 | ||
10;1378;1645;1881;2031;2233 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,104 @@ | ||
import numpy as np | ||
import pandas as pd | ||
import matplotlib.pyplot as plt | ||
def xi2(x,y, y_err): | ||
#y = a + bx | ||
N = len(x) | ||
avx = sum(x/y_err)/N | ||
avy = sum(y/y_err)/N | ||
av2x = sum(x*x/y_err)/N | ||
av2y = sum(y*y/y_err)/N | ||
R_xy = (sum(x*y/y_err)/N-avx*avy) | ||
S_x = av2x - avx**2 | ||
S_y = av2y - avy**2 | ||
b = R_xy/S_x | ||
a = avy - b * avx | ||
r = R_xy/(S_x*S_y) | ||
delta_b = np.sqrt(1/(N-2)) * np.sqrt(S_y/S_x - b**2) | ||
delta_a = delta_b * np.sqrt(av2x) | ||
f = a + b * x | ||
xi = sum(((y-f)/y_err)**2) | ||
return a, b, delta_a, delta_b, xi, r | ||
|
||
|
||
df = pd.read_csv("lab 1 4 5.csv", encoding="utf-8", sep=";") | ||
n = df.iloc[:, [0]] | ||
nu_1 = df.iloc[:, [1]] | ||
nu_1_list = np.array((nu_1["nu"])) | ||
|
||
x = np.array(range(1, 11)) | ||
print(x) | ||
plt.plot(x, nu_1_list, color="black", marker='o', ls="none", markersize= 4.5) | ||
plt.xlabel("n") | ||
plt.ylabel(r"$\nu_n(n), Гц$") | ||
print(x) | ||
print(nu_1_list) | ||
res = xi2(x, nu_1_list, np.array([1]*10)) | ||
plt.plot([0, 11], [res[0], res[0] + res[1]*11], color="black", label=r"$\nu_n = (-7.2 \pm 1.9) + (138.1 \pm 0.3) \cdot n$", linewidth=0.8) | ||
print(res) | ||
|
||
|
||
nu_1 = df.iloc[:, [2]] | ||
nu_1_list = np.array((nu_1["nu.1"])) | ||
|
||
x = np.array(range(1, 11)) | ||
print(x) | ||
plt.plot(x, nu_1_list, color="red", marker='o', ls="none", markersize= 4.5) | ||
plt.xlabel("n") | ||
plt.ylabel(r"$\nu_n(n), Гц$") | ||
print(x) | ||
print(nu_1_list) | ||
res = xi2(x, nu_1_list, np.array([1]*10)) | ||
plt.plot([0, 11], [res[0], res[0] + res[1]*11], color="red", label=r"$\nu_n = (-6.0 \pm 1.8) + (164.9 \pm 0.3) \cdot n$",linewidth=0.8) | ||
print(res) | ||
|
||
|
||
nu_1 = df.iloc[:, [3]] | ||
nu_1_list = np.array((nu_1["nu.2"])) | ||
|
||
x = np.array(range(1, 11)) | ||
print(x) | ||
plt.plot(x, nu_1_list, color="grey", marker='o', ls="none", markersize= 4.5) | ||
plt.xlabel("n") | ||
plt.ylabel(r"$\nu_n(n), Гц$") | ||
print(x) | ||
print(nu_1_list) | ||
res = xi2(x, nu_1_list, np.array([1]*10)) | ||
plt.plot([0, 11], [res[0], res[0] + res[1]*11], color="grey", label=r"$\nu_n = (-2.5 \pm 0.7) + (188.48 \pm 0.11) \cdot n$",linewidth=0.8) | ||
print(res) | ||
|
||
|
||
nu_1 = df.iloc[:, [4]] | ||
nu_1_list = np.array((nu_1["nu.3"])) | ||
|
||
x = np.array(range(1, 11)) | ||
print(x) | ||
plt.plot(x, nu_1_list, color="green", marker='o', ls="none", markersize= 4.5) | ||
plt.xlabel("n") | ||
plt.ylabel(r"$\nu_n(n), Гц$") | ||
print(x) | ||
print(nu_1_list) | ||
res = xi2(x, nu_1_list, np.array([1]*10)) | ||
plt.plot([0, 11], [res[0], res[0] + res[1]*11], color="green", label=r"$\nu_n = (-2.1 \pm 0.8) + (203.08 \pm 0.13) \cdot n$",linewidth=0.8) | ||
print(res) | ||
|
||
|
||
nu_1 = df.iloc[:, [5]] | ||
nu_1_list = np.array((nu_1["nu.4"])) | ||
|
||
x = np.array(range(1, 11)) | ||
print(x) | ||
plt.plot(x, nu_1_list, color="darkblue", marker='o', ls="none", markersize= 4.5) | ||
plt.xlabel("n") | ||
plt.ylabel(r"$\nu_n(n), Гц$") | ||
print(x) | ||
print(nu_1_list) | ||
res = xi2(x, nu_1_list, np.array([1]*10)) | ||
plt.plot([0, 11], [res[0], res[0] + res[1]*11], color="darkblue", label=r"$\nu_n = (-2.1 \pm 1.0) + (223.29 \pm 0.16) \cdot n$",linewidth=0.8) | ||
print(res) | ||
|
||
|
||
plt.legend() | ||
plt.grid(which='major', | ||
color = 'k') | ||
plt.show() |
Oops, something went wrong.