Skip to content

v0.32.1 #441

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 9 commits into from
Jun 13, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion ai_transform/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
__version__ = "0.32.0"
__version__ = "0.32.1"

from ai_transform.timer import Timer

Expand Down
7 changes: 4 additions & 3 deletions ai_transform/api/api.py
Original file line number Diff line number Diff line change
Expand Up @@ -162,9 +162,10 @@ def _list_datasets(self):
def _create_dataset(
self, dataset_id: str, schema: Optional[Schema] = None, upsert: bool = True, expire: bool = False
) -> Any:
response = self.post(
suffix=f"/datasets/create", json=dict(id=dataset_id, schema=schema, upsert=upsert, expire=expire)
)
obj = dict(id=dataset_id, upsert=upsert, expire=expire)
if schema:
obj["schema"] = schema
response = self.post(suffix=f"/datasets/create", json=obj)
return get_response(response)

def _delete_dataset(self, dataset_id: str) -> Any:
Expand Down
7 changes: 3 additions & 4 deletions ai_transform/dataset/field.py
Original file line number Diff line number Diff line change
Expand Up @@ -107,11 +107,10 @@ def contains(self, other: str) -> Filter:

def exists(self) -> Filter:
if "_chunk_" in self._field:
count = self._field.count(".")
if count:
parent_field = self._field.split(".")[0]
else:
if self._field.endswith("_chunk_"):
parent_field = self._field
else:
parent_field = self._field.split(".")[0]

return [{"chunk": {"path": parent_field, "filters": [{"fieldExists": {"field": self._field}}]}}]
return [{"field": self._field, "filter_type": "exists", "condition": "==", "condition_value": " "}]
Expand Down
6 changes: 3 additions & 3 deletions ai_transform/engine/abstract_engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,7 +63,7 @@ def __init__(
chunk_index = field.index("_chunk_") + len("_chunk_")
chunk_field = field[:chunk_index]
fields_to_add += [chunk_field]
select_fields += fields_to_add
select_fields = select_fields + fields_to_add
select_fields = list(set(select_fields))
else:
select_fields = []
Expand Down Expand Up @@ -109,8 +109,8 @@ def __init__(
self._refresh = refresh
self._after_id = after_id

filters += self._get_refresh_filter()
filters += self._get_workflow_filter()
filters = filters + self._get_refresh_filter()
filters = filters + self._get_workflow_filter()

self._filters = filters

Expand Down
12 changes: 11 additions & 1 deletion ai_transform/engine/dense_output_engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,8 @@


class DenseOutputEngine(AbstractEngine):
operator: DenseOperator

def __init__(
self,
dataset: Dataset = None,
Expand Down Expand Up @@ -72,6 +74,7 @@ def apply(self) -> None:
for mega_batch in self.api_progress(iterator):
for mini_batch in AbstractEngine.chunk_documents(self._transform_chunksize, mega_batch):
document_mapping = self._operate(mini_batch)

for dataset_id, documents in document_mapping.items():
output_dataset_ids.append(dataset_id)
dataset = Dataset.from_details(dataset_id, self.token)
Expand All @@ -81,7 +84,14 @@ def apply(self) -> None:
self.operator.post_hooks(self._dataset)

output_datasets = self.datasets_from_ids(output_dataset_ids)
self.operator.store_dataset_relationship(self.dataset, output_datasets)
self.store_dataset_relationship(output_datasets)

def datasets_from_ids(self, dataset_ids: Sequence[str]) -> Sequence[Dataset]:
return [Dataset.from_details(dataset_id, self.token) for dataset_id in dataset_ids]

def store_dataset_relationship(self, output_datasets: Sequence[Dataset]):
self.dataset.update_metadata(
{"_child_datasets_": [output_dataset.dataset_id for output_dataset in output_datasets]}
)
for output_dataset in output_datasets:
output_dataset.update_metadata({"_parent_dataset_": self.dataset.dataset_id})
9 changes: 7 additions & 2 deletions ai_transform/operator/abstract_operator.py
Original file line number Diff line number Diff line change
Expand Up @@ -75,7 +75,6 @@ def __init__(
output_fields: Optional[Union[Dict[str, str], List[str]]] = None,
enable_postprocess: Optional[bool] = True,
):

if input_fields is not None and output_fields is not None:
if any(input_field in output_fields for input_field in input_fields):
detected_fields = [input_field for input_field in input_fields if input_field in output_fields]
Expand Down Expand Up @@ -171,6 +170,12 @@ def transform_for_playground(
from ai_transform.api.client import Client

output = self.transform(documents=documents)
if hasattr(documents, "to_json"):
output = output.to_json()
else:
for index in range(len(output)):
if hasattr(output[index], "to_json"):
output[index] = output[index].to_json()
client = Client(authorization_token)
return client.api._set_workflow_status(
job_id=job_id,
Expand All @@ -180,7 +185,7 @@ def transform_for_playground(
status=status,
send_email=send_email,
worker_number=worker_number,
output=output,
output={"output": output},
)

def pre_hooks(self, dataset: Dataset):
Expand Down
14 changes: 4 additions & 10 deletions ai_transform/operator/dense_operator.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,6 @@
from typing import Dict, Sequence

from ai_transform.operator.abstract_operator import AbstractOperator
from ai_transform.dataset.dataset import Dataset
from ai_transform.utils.document import Document
from ai_transform.utils.document_list import DocumentList

Expand All @@ -24,18 +23,13 @@
class DenseOperator(AbstractOperator):
def __call__(self, old_documents: DocumentList) -> DenseOperatorOutput:
datum = self.transform(old_documents)
assert isinstance(datum, dict), BAD_OPERATOR_MESSAGE
if not isinstance(datum, dict):
raise ValueError(BAD_OPERATOR_MESSAGE)
for _, documents in datum.items():
assert isinstance(documents, Sequence)
if not isinstance(documents, Sequence):
raise ValueError(BAD_OPERATOR_MESSAGE)
return datum

@abstractmethod
def transform(self, documents: DocumentList) -> DenseOperatorOutput:
raise NotImplementedError

def store_dataset_relationship(self, input_dataset: Dataset, output_datasets: Sequence[Dataset]):
input_dataset.update_metadata(
{"_child_datasets_": [output_dataset.dataset_id for output_dataset in output_datasets]}
)
for output_dataset in output_datasets:
output_dataset.update_metadata({"_parent_dataset_": input_dataset.dataset_id})
12 changes: 1 addition & 11 deletions ai_transform/utils/document.py
Original file line number Diff line number Diff line change
Expand Up @@ -141,17 +141,7 @@ def list_chunks(self):
return [k for k in self.keys() if k.endswith("_chunk_")]

def get_chunk(self, chunk_field: str, field: str = None, default: str = None):
"""
Returns a list of values.
"""
# provide a recursive implementation for getting chunks
from ai_transform.utils.document_list import DocumentList

document_list = DocumentList(self.get(chunk_field, default=default))
# Get the field across chunks
if field is None:
return document_list
return [d.get(field, default=default) for d in document_list.data]
return [document.get(field, default) for document in self.get(chunk_field, default=default)]

def _create_chunk_documents(self, field: str, values: list, generate_id: bool = False):
"""
Expand Down
12 changes: 10 additions & 2 deletions ai_transform/utils/example_documents.py
Original file line number Diff line number Diff line change
Expand Up @@ -52,7 +52,6 @@ def create_id():


def generate_random_string(string_length: int = 5) -> str:

"""Generate a random string of letters and numbers"""
return "".join(random.choice(string.ascii_uppercase + string.digits) for _ in range(string_length))

Expand Down Expand Up @@ -92,7 +91,16 @@ def vector_document(vector_length: int) -> Document:


def mock_documents(n: int = 100, vector_length: int = 5) -> DocumentList:
return DocumentList([vector_document(vector_length) for _ in range(n)])
documents = [vector_document(vector_length) for _ in range(n)]
return DocumentList(documents)


def incomplete_documents(n: int = 100, vector_length: int = 5) -> DocumentList:
documents = [vector_document(vector_length).data for _ in range(n)]
for document in documents:
for key in random.sample(document.keys(), 3):
document.pop(key)
return DocumentList(documents)


def static_documents(n: int = 100) -> DocumentList:
Expand Down
2 changes: 1 addition & 1 deletion examples/workflows/clustering_example.py
Original file line number Diff line number Diff line change
Expand Up @@ -71,7 +71,7 @@ def execute(token: str, logger: Callable, worker_number: int = 0, *args, **kwarg
engine = InMemoryEngine(
dataset=dataset,
operator=operator,
chunksize=16,
chunksize=8,
select_fields=[vector_field],
filters=filters,
worker_number=worker_number,
Expand Down
4 changes: 1 addition & 3 deletions examples/workflows/sentiment_example.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,15 +2,13 @@
# transformers[torch]==4.18.0
# relevance-workflows-core

import uuid
import torch

from typing import Callable, List, Optional
from typing import Callable, Optional

from transformers import pipeline
from ai_transform.api.client import Client
from ai_transform.engine.stable_engine import StableEngine
from ai_transform.workflow.helpers import decode_workflow_token
from ai_transform.workflow.abstract_workflow import AbstractWorkflow
from ai_transform.operator.abstract_operator import AbstractOperator
from ai_transform.utils.document_list import DocumentList
Expand Down
66 changes: 57 additions & 9 deletions tests/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,14 @@

from ai_transform.utils.document import Document
from ai_transform.utils.document_list import DocumentList
from ai_transform.utils.example_documents import mock_documents, static_documents, tag_documents
from ai_transform.utils.example_documents import (
mock_documents,
static_documents,
tag_documents,
generate_random_vector,
incomplete_documents,
)


TEST_TOKEN = os.getenv("TEST_TOKEN")
test_creds = process_token(TEST_TOKEN)
Expand All @@ -44,11 +51,11 @@ def test_dataset_id() -> str:
return dataset_id


@pytest.fixture(scope="class")
@pytest.fixture(scope="function")
def empty_dataset(test_client: Client) -> Dataset:
salt = "".join(random.choices(string.ascii_lowercase, k=10))
dataset_id = f"_sample_dataset_{salt}"
dataset = test_client.Dataset(dataset_id, expire=True)
dataset = test_client.Dataset(dataset_id, expire=False)
yield dataset
test_client.delete_dataset(dataset_id)

Expand Down Expand Up @@ -137,8 +144,8 @@ def static_dataset(test_client: Client) -> Dataset:
test_client.delete_dataset(dataset_id)


@pytest.fixture(scope="class")
def dense_input_dataset(test_client: Client) -> Dataset:
@pytest.fixture(scope="function")
def dense_input_dataset1(test_client: Client) -> Dataset:
salt = "".join(random.choices(string.ascii_lowercase, k=10))
dataset_id = f"_sample_dataset_{salt}"
dataset = test_client.Dataset(dataset_id, expire=True)
Expand All @@ -147,7 +154,17 @@ def dense_input_dataset(test_client: Client) -> Dataset:
test_client.delete_dataset(dataset_id)


@pytest.fixture(scope="class")
@pytest.fixture(scope="function")
def dense_input_dataset2(test_client: Client) -> Dataset:
salt = "".join(random.choices(string.ascii_lowercase, k=10))
dataset_id = f"_sample_dataset_{salt}"
dataset = test_client.Dataset(dataset_id, expire=True)
dataset.insert_documents(mock_documents(100))
yield dataset
test_client.delete_dataset(dataset_id)


@pytest.fixture(scope="function")
def dense_output_dataset1(test_client: Client) -> Dataset:
salt = "".join(random.choices(string.ascii_lowercase, k=10))
dataset_id = f"_sample_dataset_{salt}"
Expand All @@ -156,7 +173,7 @@ def dense_output_dataset1(test_client: Client) -> Dataset:
test_client.delete_dataset(dataset_id)


@pytest.fixture(scope="class")
@pytest.fixture(scope="function")
def dense_output_dataset2(test_client: Client) -> Dataset:
salt = "".join(random.choices(string.ascii_lowercase, k=10))
dataset_id = f"_sample_dataset_{salt}"
Expand Down Expand Up @@ -264,6 +281,37 @@ def transform(self, documents: DocumentList) -> DocumentList:
return TestDenseOperator(output_dataset_ids)


@pytest.fixture(scope="function")
def test_chunk_dense_operator(dense_output_dataset1: Dataset, dense_output_dataset2: Dataset) -> DenseOperator:
class TestDenseOperator(DenseOperator):
def __init__(self, output_dataset_ids: Sequence[str]):
self.output_dataset_ids = output_dataset_ids
self._chunk_field = "_chunk_"
self._text_field = "label"
self._alias = "default"
super().__init__()

def transform(self, documents: List[Document]) -> List[Document]:
outputs = []
for document in documents:
texts = document.get_chunk(chunk_field=self._chunk_field, field=self._text_field)
text_vectors = [generate_random_vector() for _ in range(len(texts))]

for sent_index, text_vector in enumerate(text_vectors):
outputs.append(
{
"_id": document["_id"] + f":{sent_index}",
f"{self._text_field}_{self._alias}_vector_": text_vector,
"_order": sent_index,
}
)

return {dataset_id: documents for dataset_id in self.output_dataset_ids}

output_dataset_ids = (dense_output_dataset1.dataset_id, dense_output_dataset2.dataset_id)
return TestDenseOperator(output_dataset_ids)


@pytest.fixture(scope="function")
def test_engine(full_dataset: Dataset, test_operator: AbstractOperator) -> StableEngine:
return StableEngine(dataset=full_dataset, operator=test_operator)
Expand All @@ -284,7 +332,7 @@ def test_sentiment_workflow_token(test_client: Client) -> str:
salt = "".join(random.choices(string.ascii_lowercase, k=10))
dataset_id = f"_sample_dataset_{salt}"
dataset = test_client.Dataset(dataset_id, expire=True)
dataset.insert_documents(mock_documents(20))
dataset.insert_documents(incomplete_documents(20))
time.sleep(1)
job_id = str(uuid.uuid4())
config = dict(
Expand Down Expand Up @@ -361,7 +409,7 @@ def test_cluster_workflow_token(test_client: Client) -> str:
salt = "".join(random.choices(string.ascii_lowercase, k=10))
dataset_id = f"_sample_dataset_{salt}"
dataset = test_client.Dataset(dataset_id, expire=True)
dataset.insert_documents(mock_documents(20))
dataset.insert_documents(incomplete_documents(20))
job_id = str(uuid.uuid4())
print(job_id)
config = dict(
Expand Down
11 changes: 5 additions & 6 deletions tests/core/test_dataset/test_dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,13 +5,7 @@
from ai_transform.utils.example_documents import mock_documents


@pytest.mark.usefixtures("empty_dataset")
class TestDataset1:
def test_create_delete(self, empty_dataset: Dataset):
empty_dataset.delete()
empty_dataset.create()
assert True

def test_insert(self, empty_dataset: Dataset):
documents = mock_documents(100)
result = empty_dataset.insert_documents(documents)
Expand All @@ -21,6 +15,11 @@ def test_get_all(self, full_dataset: Dataset):
res = full_dataset.get_all_documents()
assert len(res["documents"]) == 20

def test_create_delete(self, empty_dataset: Dataset):
empty_dataset.delete()
empty_dataset.create()
assert True


@pytest.mark.usefixtures("full_dataset")
class TestDataset2:
Expand Down
Loading