Skip to content

RehanShaikh-ai/cifar-10-image-classification

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🖼️ CIFAR-10 Image Classification

Python TensorFlow Keras Matplotlib scikit-learn Status License


📌 Overview

This project builds an image classification system using the CIFAR-10 dataset.
We compare two approaches:

  • A Basic Convolutional Neural Network (CNN).
  • An Enhanced CNN with Dropout, BatchNorm, and Data Augmentation.


🗂 Dataset

Source: CIFAR-10 Dataset
Structure:

  • 60,000 color images (32x32 pixels, RGB)
  • 50,000 training images + 10,000 testing images
  • 10 categories: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck

🛠 Tech Stack

  • Python 3.x
  • TensorFlow / Keras → Deep learning models
  • NumPy → Numerical operations
  • Matplotlib / Seaborn → Visualization
  • scikit-learn → Evaluation metrics
  • Jupyter Notebook → Development environment

📍 Project Steps

  1. Data Loading & Preprocessing

    • Normalize pixel values
    • Apply Data Augmentation
  2. Model 1: Basic CNN

    • Simple Conv + MaxPooling layers
    • Dense layers for classification
  3. Model 2: Enhanced CNN

    • Deeper architecture
    • Dropout + Batch Normalization
    • Data Augmentation
  4. Evaluation

    • Accuracy, Precision, Recall, F1-score
    • Confusion Matrix
    • Training vs Validation curves
  5. Visualization

    • Example predictions (correct vs incorrect)
    • Confusion matrix heatmap

🚀 How to Run

# Clone the repository
git clone https://github.com/RehanShaikh-ai/cifar-10-image-classification.git
cd cifar-10-image-classification

# Install dependencies
pip install -r requirements.txt

# Run Jupyter Notebook

👤 Author

Rehan Abdul Gani Shaikh Aspiring Data Scientist | B.Tech Student

🔗 Connect with me: LinkedIn

📬 Email: rehansk.3107@gmail.com