Skip to content

comments fixed: synced with code in xGTT02 (#3 from PR#562 discussion) #566

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
May 24, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions TESTING/LIN/cgtt02.f
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@
*>
*> CGTT02 computes the residual for the solution to a tridiagonal
*> system of equations:
*> RESID = norm(B - op(A)*X) / (norm(A) * norm(X) * EPS),
*> RESID = norm(B - op(A)*X) / (norm(op(A)) * norm(X) * EPS),
*> where EPS is the machine epsilon.
*> \endverbatim
*
Expand Down Expand Up @@ -105,7 +105,7 @@
*> \param[out] RESID
*> \verbatim
*> RESID is REAL
*> norm(B - op(A)*X) / (norm(A) * norm(X) * EPS)
*> norm(B - op(A)*X) / (norm(op(A)) * norm(X) * EPS)
*> \endverbatim
*
* Authors:
Expand Down Expand Up @@ -166,7 +166,7 @@ SUBROUTINE CGTT02( TRANS, N, NRHS, DL, D, DU, X, LDX, B, LDB,
$ RETURN
*
* Compute the maximum over the number of right hand sides of
* norm(B - op(A)*X) / ( norm(A) * norm(X) * EPS ).
* norm(B - op(A)*X) / ( norm(op(A)) * norm(X) * EPS ).
*
IF( LSAME( TRANS, 'N' ) ) THEN
ANORM = CLANGT( '1', N, DL, D, DU )
Expand Down
6 changes: 3 additions & 3 deletions TESTING/LIN/dgtt02.f
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@
*>
*> DGTT02 computes the residual for the solution to a tridiagonal
*> system of equations:
*> RESID = norm(B - op(A)*X) / (norm(A) * norm(X) * EPS),
*> RESID = norm(B - op(A)*X) / (norm(op(A)) * norm(X) * EPS),
*> where EPS is the machine epsilon.
*> \endverbatim
*
Expand Down Expand Up @@ -105,7 +105,7 @@
*> \param[out] RESID
*> \verbatim
*> RESID is DOUBLE PRECISION
*> norm(B - op(A)*X) / (norm(A) * norm(X) * EPS)
*> norm(B - op(A)*X) / (norm(op(A)) * norm(X) * EPS)
*> \endverbatim
*
* Authors:
Expand Down Expand Up @@ -166,7 +166,7 @@ SUBROUTINE DGTT02( TRANS, N, NRHS, DL, D, DU, X, LDX, B, LDB,
$ RETURN
*
* Compute the maximum over the number of right hand sides of
* norm(B - op(A)*X) / ( norm(A) * norm(X) * EPS ).
* norm(B - op(A)*X) / ( norm(op(A)) * norm(X) * EPS ).
*
IF( LSAME( TRANS, 'N' ) ) THEN
ANORM = DLANGT( '1', N, DL, D, DU )
Expand Down
6 changes: 3 additions & 3 deletions TESTING/LIN/sgtt02.f
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@
*>
*> SGTT02 computes the residual for the solution to a tridiagonal
*> system of equations:
*> RESID = norm(B - op(A)*X) / (norm(A) * norm(X) * EPS),
*> RESID = norm(B - op(A)*X) / (norm(op(A)) * norm(X) * EPS),
*> where EPS is the machine epsilon.
*> \endverbatim
*
Expand Down Expand Up @@ -105,7 +105,7 @@
*> \param[out] RESID
*> \verbatim
*> RESID is REAL
*> norm(B - op(A)*X) / (norm(A) * norm(X) * EPS)
*> norm(B - op(A)*X) / (norm(op(A)) * norm(X) * EPS)
*> \endverbatim
*
* Authors:
Expand Down Expand Up @@ -166,7 +166,7 @@ SUBROUTINE SGTT02( TRANS, N, NRHS, DL, D, DU, X, LDX, B, LDB,
$ RETURN
*
* Compute the maximum over the number of right hand sides of
* norm(B - op(A)*X) / ( norm(A) * norm(X) * EPS ).
* norm(B - op(A)*X) / ( norm(op(A)) * norm(X) * EPS ).
*
IF( LSAME( TRANS, 'N' ) ) THEN
ANORM = SLANGT( '1', N, DL, D, DU )
Expand Down
6 changes: 3 additions & 3 deletions TESTING/LIN/zgtt02.f
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@
*>
*> ZGTT02 computes the residual for the solution to a tridiagonal
*> system of equations:
*> RESID = norm(B - op(A)*X) / (norm(A) * norm(X) * EPS),
*> RESID = norm(B - op(A)*X) / (norm(op(A)) * norm(X) * EPS),
*> where EPS is the machine epsilon.
*> \endverbatim
*
Expand Down Expand Up @@ -105,7 +105,7 @@
*> \param[out] RESID
*> \verbatim
*> RESID is DOUBLE PRECISION
*> norm(B - op(A)*X) / (norm(A) * norm(X) * EPS)
*> norm(B - op(A)*X) / (norm(op(A)) * norm(X) * EPS)
*> \endverbatim
*
* Authors:
Expand Down Expand Up @@ -166,7 +166,7 @@ SUBROUTINE ZGTT02( TRANS, N, NRHS, DL, D, DU, X, LDX, B, LDB,
$ RETURN
*
* Compute the maximum over the number of right hand sides of
* norm(B - op(A)*X) / ( norm(A) * norm(X) * EPS ).
* norm(B - op(A)*X) / ( norm(op(A)) * norm(X) * EPS ).
*
IF( LSAME( TRANS, 'N' ) ) THEN
ANORM = ZLANGT( '1', N, DL, D, DU )
Expand Down