Skip to content

FEAT: Add random.draw #397

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Mar 12, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion quantecon/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@

#-Objects-#
from .compute_fp import compute_fixed_point
from .discrete_rv import DiscreteRV, random_choice_scalar, random_choice
from .discrete_rv import DiscreteRV
from .ecdf import ECDF
from .estspec import smooth, periodogram, ar_periodogram
# from .game_theory import <objects-here> #Place Holder if we wish to promote any general objects to the qe namespace.
Expand Down
94 changes: 14 additions & 80 deletions quantecon/discrete_rv.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
import numpy as np
from numpy import cumsum
from numpy.random import uniform
from numba import jit
from .util import check_random_state


class DiscreteRV:
Expand All @@ -26,7 +26,7 @@ class DiscreteRV:

Attributes
----------
q : see Parameters
q : see Parameters.
Q : array_like(float)
The cumulative sum of q.

Expand Down Expand Up @@ -59,7 +59,7 @@ def q(self, val):
self._q = np.asarray(val)
self.Q = cumsum(val)

def draw(self, k=None, seed=None):
def draw(self, k=1, random_state=None):
"""
Returns k draws from q.

Expand All @@ -69,87 +69,21 @@ def draw(self, k=None, seed=None):
Parameters
-----------
k : scalar(int), optional
Number of draws to be returned.
seed : scalar(int), optional
Random seed (integer) to set the initial state of the random number
generator for reproducibility. If None, a seed is randomly
generated.
Number of draws to be returned

random_state : int or np.random.RandomState, optional
Random seed (integer) or np.random.RandomState instance to set
the initial state of the random number generator for
reproducibility. If None, a randomly initialized RandomState is
used.

Returns
-------
array_like(int)
An array of k independent draws from q.
An array of k independent draws from q

"""
if seed is None:
seed = np.random.randint(10**18)

if k is None:
return random_choice_scalar(self._q, seed=seed, cum_sum=self.Q)
else:
return random_choice(self._q, seed=seed, cum_sum=self.Q, size=k)


@jit(nopython=True)
def random_choice_scalar(p_vals, seed, cum_sum=None):
"""
Returns one draw from `p_vals`. Optimized using Numba and compilied in
nopython mode.

Parameters
-----------
p_vals : array_like(float)
Nonnegative numbers that sum to 1.
seed : scalar(int)
Random seed (integer) to set the initial state of the random number
generator for reproducibility.
cum_sum : array_like(float), optional
The cumulative sum of p_vals.

Returns
-------
scalar(int)
One draw from p_vals.

"""
np.random.seed(seed)

if cum_sum is None:
cum_sum = cumsum(p_vals)

return np.searchsorted(a=cum_sum, v=uniform(0, 1))


@jit(nopython=True)
def random_choice(p_vals, seed, cum_sum=None, size=1):
"""
Returns `size` draws from `p_vals`. Optimized using Numba and compilied in
nopython mode.

For each such draw, the value i is returned with probability
p_vals[i].

Parameters
-----------
p_vals : array_like(float)
Nonnegative numbers that sum to 1.
seed : scalar(int)
Random seed (integer) to set the initial state of the random number
generator for reproducibility.
cum_sum : array_like(float), optional
The cumulative sum of p_vals.
size : scalar(int), optional
Number of draws to be returned.

Returns
-------
array_like(int)
An array of k independent draws from p_vals.

"""
np.random.seed(seed)

if cum_sum is None:
cum_sum = cumsum(p_vals)
random_state = check_random_state(random_state)

return np.searchsorted(a=cum_sum, v=uniform(0, 1, size=size))
return self.Q.searchsorted(random_state.uniform(0, 1, size=k),
side='right')
2 changes: 1 addition & 1 deletion quantecon/random/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,4 +13,4 @@
1. AR1 Function
"""

from .utilities import probvec, sample_without_replacement
from .utilities import probvec, sample_without_replacement, draw
40 changes: 37 additions & 3 deletions quantecon/random/tests/test_utilities.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,10 +7,11 @@
sample_without_replacement

"""
import numbers
import numpy as np
from numpy.testing import assert_array_equal, assert_raises
from nose.tools import eq_
from quantecon.random import probvec, sample_without_replacement
from numpy.testing import assert_array_equal, assert_allclose, assert_raises
from nose.tools import eq_, ok_
from quantecon.random import probvec, sample_without_replacement, draw


# probvec #
Expand Down Expand Up @@ -64,6 +65,39 @@ def test_sample_without_replacement_value_error():
assert_raises(ValueError, sample_without_replacement, 2, 3)


# draw #

class TestDraw:
def setUp(self):
self.pmf = np.array([0.4, 0.1, 0.5])
self.cdf = np.cumsum(self.pmf)
self.n = len(self.pmf)

def test_return_types(self):
out = draw(self.cdf)
ok_(isinstance(out, numbers.Integral))

size = 10
out = draw(self.cdf, size)
eq_(out.shape, (size,))

def test_return_values(self):
out = draw(self.cdf)
ok_(out in range(self.n))

size = 10
out = draw(self.cdf, size)
ok_(np.isin(out, range(self.n)).all())

def test_lln(self):
size = 1000000
out = draw(self.cdf, size)
hist, bin_edges = np.histogram(out, bins=self.n, density=True)
pmf_computed = hist * np.diff(bin_edges)
atol = 1e-2
assert_allclose(pmf_computed, self.pmf, atol=atol)


if __name__ == '__main__':
import sys
import nose
Expand Down
47 changes: 45 additions & 2 deletions quantecon/random/utilities.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,9 +3,9 @@
"""

import numpy as np
from numba import jit, guvectorize
from numba import jit, guvectorize, generated_jit, types

from ..util import check_random_state
from ..util import check_random_state, searchsorted


# Generating Arrays and Vectors #
Expand Down Expand Up @@ -161,3 +161,46 @@ def sample_without_replacement(n, k, num_trials=None, random_state=None):
return result[0]
else:
return result


@generated_jit(nopython=True)
def draw(cdf, size=None):
"""
Generate a random sample according to the cumulative distribution
given by `cdf`. Jit-complied by Numba in nopython mode.

Parameters
----------
cdf : array_like(float, ndim=1)
Array containing the cumulative distribution.

size : scalar(int), optional(default=None)
Size of the sample. If an integer is supplied, an ndarray of
`size` independent draws is returned; otherwise, a single draw
is returned as a scalar.

Returns
-------
scalar(int) or ndarray(int, ndim=1)

Examples
--------
>>> cdf = np.cumsum([0.4, 0.6])
>>> qe.random.draw(cdf)
1
>>> qe.random.draw(cdf, 10)
array([1, 0, 1, 0, 1, 0, 0, 0, 1, 0])

"""
if isinstance(size, types.Integer):
def draw_impl(cdf, size):
rs = np.random.random_sample(size)
out = np.empty(size, dtype=np.int_)
for i in range(size):
out[i] = searchsorted(cdf, rs[i])
return out
else:
def draw_impl(cdf, size):
r = np.random.random_sample()
return searchsorted(cdf, r)
return draw_impl
2 changes: 1 addition & 1 deletion quantecon/tests/test_discrete_rv.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,7 @@ def test_draw_with_seed(self):
x = np.array([0.03326189, 0.60713005, 0.84514831, 0.28493183,
0.12393182, 0.35308009, 0.70371579, 0.81728178,
0.21294538, 0.05358209])
draws = DiscreteRV(x).draw(k=10, seed=5)
draws = DiscreteRV(x).draw(k=10, random_state=5)

expected_output = np.array([1, 2, 1, 2, 1, 1, 2, 1, 1, 1])

Expand Down