Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add new tutorial for multi-currencies arbitrage using Bellman-Ford Algorithm #48

Open
wants to merge 6 commits into
base: master
Choose a base branch
from
Open
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
Fixed: Issue #47
## Description
Replying to this issue

Related Issue
How to extract Implied volatility from Quantconnect #47


Types of changes
-[ ] Bug fix (non-breaking change which fixes an issue)
-[ ] Refactor (non-breaking change which improves implementation)
-[ ] New feature (non-breaking change which adds functionality)
-[ x] Non-functional change (xml comments/documentation/etc)
Checklist:
-[ x] My code follows the code style of this project.
-[ x] I have read the CONTRIBUTING [document](https://github.com/QuantConnect/Lean/blob/master/CONTRIBUTING.md).
-[ x] My branch follows the naming convention bug-<issue#>-<description> or feature-<issue#>-<description>
  • Loading branch information
leo-ai-for-trading authored May 27, 2023
commit 59417e56bcfc3c155a1e38846cb902142655b03f
266 changes: 266 additions & 0 deletions Local_Stochastic_Volatility_Model.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,266 @@
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "markdown",
"source": [
"![QuantConnect Logo](https://cdn.quantconnect.com/web/i/icon.png)\n",
"<hr>"
],
"metadata": {
"id": "6iZIAgxW8Ari"
}
},
{
"cell_type": "markdown",
"source": [
"# Dupire model\n",
"$C\\left(S_0, K, T\\right)=\\int_K^{\\infty} d S_T \\varphi\\left(S_T, T ; S_0\\right)\\left(S_T-K\\right)$\n",
"### risk-neutral density function φ of the final spot $S_T$\n",
"$\\varphi\\left(K, T ; S_0\\right)=\\frac{\\partial^2 C}{\\partial K^2}$\n",
"## Drift\n",
"$\\mu = r_t − D_t$\n",
"## local volatility\n",
"$\\sigma^2\\left(K, T, S_0\\right)=\\frac{\\frac{\\partial C}{\\partial T}}{\\frac{1}{2} K^2 \\frac{\\partial^2 C}{\\partial K^2}}$\n",
"## undiscounted option price C in terms of the strike price K:\n",
"### which is the Dupire equation when the underlying stock has risk-neutral drift μ.\n",
"$\\frac{\\partial C}{\\partial T}=\\frac{\\sigma^2 K^2}{2} \\frac{\\partial^2 C}{\\partial K^2}+\\left(r_t-D_t\\right)\\left(C-K \\frac{\\partial C}{\\partial K}\\right)$\n",
"# BSM model\n",
"$Call=S N\\left(d_1\\right)-K e^{-r \\tau} N\\left(d_2\\right)$ \n",
"\\\n",
"$d_1=\\frac{\\ln (S / K)+\\left(r-y+\\sigma^2 / 2\\right) \\tau}{\\sigma \\sqrt{\\tau}}$\n",
"\\\n",
"$d_2=\\frac{\\ln (S / K)+\\left(r-y-\\sigma^2 / 2\\right) \\tau}{\\sigma \\sqrt{\\tau}}=d_1-\\sigma \\sqrt{\\tau}$\n",
"\n",
"## PDF of Normal \n",
"$f(x)=\\frac{1}{\\sigma \\sqrt{2 \\pi}} e^{-\\frac{1}{2}\\left(\\frac{x-\\mu}{\\sigma}\\right)^2}$\n",
"\n",
"## CDF of Normal\n",
"$N(x)=\\frac{1}{\\sqrt{2 \\pi}} \\int_{-\\infty}^x e^{-z^2 / 2} d z$\n"
],
"metadata": {
"id": "fqocn6D58JDW"
}
},
{
"cell_type": "markdown",
"source": [
"# Importing Libraries"
],
"metadata": {
"id": "LeIimwLE8FOu"
}
},
{
"cell_type": "code",
"source": [
"import sympy as smp \n",
"import numpy as np\n",
"from sympy.stats import P, E, variance, Die, Normal\n",
"from sympy import simplify\n"
],
"metadata": {
"id": "dk37ioq7wpBX"
},
"execution_count": 2,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"\n",
"# Risk-neutral density function φ of the final spot $S_T$\n",
"$\\varphi\\left(K, T ; S_0\\right)=\\frac{\\partial^2 C}{\\partial K^2}$"
],
"metadata": {
"id": "BOs4Ha4_9Go_"
}
},
{
"cell_type": "code",
"source": [
"#define the function symbols\n",
"Call,varphi,N = smp.symbols('Call varphi N', cls=smp.Function) \n",
"S_0,K,T,S_T,D,r,sigma,tau ,d_1,d_2 = smp.symbols('S_0 K T S_T D r sigma tau d_1 d_2',real=True) \n",
"\n",
"\n",
"Call = smp.symbols('Call', cls=smp.Function) \n",
"f_d_1,f_d_2,F_d_1,F_d_2 = smp.symbols('f_d_1 f_d_2 F_d_1 F_d_2' , cls=smp.Function) \n",
"mu_google,sigma_google= smp.symbols('mu_google sigma_google',real=True) \n",
"f_d_1 = Normal('d_1', mu_google, sigma_google)\n",
"f_d_2 = Normal('d_2', mu_google, sigma_google)\n",
"\n",
"\n",
"F_d_1 = simplify(P(f_d_1>tau))\n",
"F_d_2 = simplify(P(f_d_2>tau))\n",
"Call = S_T * F_d_1 - K * smp.exp(-r*tau) * F_d_2\n",
"\n",
"\n",
"varphi = smp.diff(Call,K,2)\n",
"\n",
"#varphi.subs([(Call,Call),(K,int(K))]).evalf()"
],
"metadata": {
"id": "0G1VQsJF8M0M"
},
"execution_count": 4,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"\n",
"## Undiscounted option price C in terms of the strike price K:\n",
"### which is the Dupire equation when the underlying stock has risk-neutral drift μ.\n",
"$\\frac{\\partial C}{\\partial T}=\\frac{\\sigma^2 K^2}{2} \\frac{\\partial^2 C}{\\partial K^2}+\\left(r_t-D_t\\right)\\left(C-K \\frac{\\partial C}{\\partial K}\\right)$"
],
"metadata": {
"id": "ORnbFO8A8XAJ"
}
},
{
"cell_type": "code",
"source": [
"dCdT = sigma**2 * K / 2 * varphi + (r - D)* (Call - K * smp.diff(Call,K))\n",
"dCdT"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 137
},
"id": "Xf5AbHNS8XT6",
"outputId": "fec23eba-66b6-4c57-8588-38d7d839f9ff"
},
"execution_count": 5,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"S_T*(-D + r)*Piecewise((erf(sqrt(2)*(mu_google - tau)/(2*sigma_google))/2 + 1/2, (Abs(arg(sigma_google)) < pi/4) | ((Abs(arg(sigma_google)) <= pi/4) & (Abs(2*arg(mu_google) - 4*arg(sigma_google) + 2*arg((mu_google - tau)/mu_google) + 2*pi) < pi))), (sqrt(2)*Integral(exp(-(_z - mu_google + tau)**2/(2*sigma_google**2)), (_z, 0, oo))/(2*sqrt(pi)*sigma_google), True))"
],
"text/latex": "$\\displaystyle S_{T} \\left(- D + r\\right) \\left(\\begin{cases} \\frac{\\operatorname{erf}{\\left(\\frac{\\sqrt{2} \\left(\\mu_{google} - \\tau\\right)}{2 \\sigma_{google}} \\right)}}{2} + \\frac{1}{2} & \\text{for}\\: \\left(\\left|{\\arg{\\left(\\sigma_{google} \\right)}}\\right| \\leq \\frac{\\pi}{4} \\wedge \\left|{2 \\arg{\\left(\\mu_{google} \\right)} - 4 \\arg{\\left(\\sigma_{google} \\right)} + 2 \\arg{\\left(\\frac{\\mu_{google} - \\tau}{\\mu_{google}} \\right)} + 2 \\pi}\\right| < \\pi\\right) \\vee \\left|{\\arg{\\left(\\sigma_{google} \\right)}}\\right| < \\frac{\\pi}{4} \\\\\\frac{\\sqrt{2} \\int\\limits_{0}^{\\infty} e^{- \\frac{\\left(z - \\mu_{google} + \\tau\\right)^{2}}{2 \\sigma_{google}^{2}}}\\, dz}{2 \\sqrt{\\pi} \\sigma_{google}} & \\text{otherwise} \\end{cases}\\right)$"
},
"metadata": {},
"execution_count": 5
}
]
},
{
"cell_type": "markdown",
"source": [
"## Local volatility\n",
"$\\sigma^2\\left(K, T, S_0\\right)=\\frac{\\frac{\\partial C}{\\partial T}}{\\frac{1}{2} K^2 \\frac{\\partial^2 C}{\\partial K^2}}$\n",
"\n",
"The right-hand side of this equation can be computed from known European option prices. So, given a complete set of European option prices for all strikes and expirations, local volatilities are given uniquely by equation above.\n",
"We can view this equation as a definition of the local volatility function regardless of what kind of process (stochastic volatility for example) actually governs the evolution of volatility."
],
"metadata": {
"id": "tLMrOdpH8ci9"
}
},
{
"cell_type": "code",
"source": [
"local_volatility = smp.sqrt( dCdT / (1/2*K**2 * varphi))\n",
"local_volatility"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 141
},
"id": "6-ut-zDY8aMU",
"outputId": "7696d056-f450-4e39-e466-d3f270052379"
},
"execution_count": 6,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"sqrt(zoo*S_T*(-D + r)*Piecewise((erf(sqrt(2)*(mu_google - tau)/(2*sigma_google))/2 + 1/2, (Abs(arg(sigma_google)) < pi/4) | ((Abs(arg(sigma_google)) <= pi/4) & (Abs(2*arg(mu_google) - 4*arg(sigma_google) + 2*arg((mu_google - tau)/mu_google) + 2*pi) < pi))), (sqrt(2)*Integral(exp(-(_z - mu_google + tau)**2/(2*sigma_google**2)), (_z, 0, oo))/(2*sqrt(pi)*sigma_google), True)))"
],
"text/latex": "$\\displaystyle \\sqrt{\\tilde{\\infty} S_{T} \\left(- D + r\\right) \\left(\\begin{cases} \\frac{\\operatorname{erf}{\\left(\\frac{\\sqrt{2} \\left(\\mu_{google} - \\tau\\right)}{2 \\sigma_{google}} \\right)}}{2} + \\frac{1}{2} & \\text{for}\\: \\left(\\left|{\\arg{\\left(\\sigma_{google} \\right)}}\\right| \\leq \\frac{\\pi}{4} \\wedge \\left|{2 \\arg{\\left(\\mu_{google} \\right)} - 4 \\arg{\\left(\\sigma_{google} \\right)} + 2 \\arg{\\left(\\frac{\\mu_{google} - \\tau}{\\mu_{google}} \\right)} + 2 \\pi}\\right| < \\pi\\right) \\vee \\left|{\\arg{\\left(\\sigma_{google} \\right)}}\\right| < \\frac{\\pi}{4} \\\\\\frac{\\sqrt{2} \\int\\limits_{0}^{\\infty} e^{- \\frac{\\left(z - \\mu_{google} + \\tau\\right)^{2}}{2 \\sigma_{google}^{2}}}\\, dz}{2 \\sqrt{\\pi} \\sigma_{google}} & \\text{otherwise} \\end{cases}\\right)}$"
},
"metadata": {},
"execution_count": 6
}
]
},
{
"cell_type": "markdown",
"source": [
"# Using real values from QuantBook to calculate Local Volatility"
],
"metadata": {
"id": "JSHTTZeU9ONk"
}
},
{
"cell_type": "code",
"source": [
"# QuantBook Analysis Tool \n",
"# For more information see [https://www.quantconnect.com/docs/v2/our-platform/research/getting-started]\n",
"import datetime\n",
"qb = QuantBook()\n",
"option = qb.AddOption(\"GOOG\") \n",
"option.SetFilter(-2, 2, 0, 90)\n",
"history = qb.GetOptionHistory(option.Symbol, datetime(2023, 5, 7), datetime(2023, 5, 26))\n",
"\n",
"all_history = history.GetAllData()\n",
"expiries = history.GetExpiryDates() \n",
"strikes = history.GetStrikes()\n",
"\n",
"goog = qb.AddEquity(\"GOOG\")\n",
"goog_df = qb.History(qb.Securities.Keys, datetime(2023, 5, 7), datetime(2023, 5, 26), Resolution.Daily)\n",
"goog_df = goog_df['close'].unstack(level=0)\n",
"S_T = goog_df.values[-1]\n",
"all_history.head()"
],
"metadata": {
"id": "pYG7bmQv88tI"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"#BSM model of Call option\n",
"import math\n",
"import sympy.stats\n",
"\n",
"####################### parameters #########################\n",
"tau = 3/220 #expiry the 5/19\n",
"r = 0.0341 \n",
"D = 0.0\n",
Comment on lines +250 to +251

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can use Lean's InterestRateProvider

InterestRateProvider().GetInterestRate(goog_df.index[...])    # sub in the time

and DividendYieldProvider

DividendYieldProvider(goog).GetDividendYield(goog_df.index[...])    # sub in the time

"K = strikes[-1]\n",
"sigma = goog_df.std()\n",
"S_T = float(goog_df.values[-1])\n",
"mu_goog = goog_df.mean()\n",
"#Calculate numerically the local volatility\n",
"local_volatility.subs([(S_T,S_T),(K,int(K)),(tau,tau),(D,D),(sigma_google,sigma),(mu_google,mu_google)]).evalf()\n"
],
"metadata": {
"id": "lcZxAl8K8msU"
},
"execution_count": null,
"outputs": []
}
]
}