Comprehensive collection of deep learning algorithms and architectures including Variational Autoencoders, RNN text generation, adversarial robustness, and optimization methods. Professional implementations with research-grade quality and educational value.
- Generative Models: Variational Autoencoders (VAE) framework
- Sequence Models: RNN/LSTM text generation systems
- Adversarial Robustness: Defense against adversarial attacks
- Optimization: Advanced optimization function visualization
- Modular Design: Reusable components and clean APIs
- Research Ready: Publication-quality implementations
from src.variational_autoencoder import VAE
from src.rnn_text_generator import RNNTextGenerator
# Train a Variational Autoencoder
vae = VAE(input_dim=784, latent_dim=32)
vae.train(train_loader, epochs=100)
# Generate new samples
generated_samples = vae.generate(num_samples=64)
# Text generation with RNN
text_generator = RNNTextGenerator()
text_generator.load_data('data/shakespeare.txt')
text_generator.train(epochs=50)
# Generate new text
generated_text = text_generator.generate("To be or not to be", length=100)- Location:
src/variational_autoencoder/ - Features: Probabilistic encoder-decoder with KL divergence
- Applications: Image generation, dimensionality reduction, anomaly detection
- Location:
src/rnn_text_generation/ - Features: Character and word-level text generation
- Applications: Creative writing, language modeling, style transfer
- Location:
src/adversarial_robustness/ - Features: FGSM, PGD attacks and defense mechanisms
- Applications: Model security, robustness evaluation
- Location:
src/optimization_functions/ - Features: 2D/3D optimization landscape visualization
- Applications: Algorithm comparison, education, research
- Location:
src/logistic_regression_optimization/ - Features: Advanced optimization for logistic regression
- Applications: Binary classification, optimization benchmarks
deep-learning-algorithms-toolkit/
βββ src/ # Source algorithms
β βββ variational_autoencoder/ # VAE implementation
β βββ rnn_text_generation/ # Text generation
β βββ adversarial_robustness/ # Security methods
β βββ optimization_functions/ # Optimization tools
β βββ logistic_regression_optimization/ # LR optimization
βββ examples/ # Usage examples
βββ tests/ # Test suite
βββ docs/ # Documentation
βββ data/ # Sample datasets
βββ models/ # Pre-trained models
βββ README.md # This file
# Configure VAE architecture
vae_config = {
'input_dim': 784, # MNIST images
'hidden_dims': [512, 256],
'latent_dim': 32,
'beta': 1.0 # KL divergence weight
}
vae = VAE(**vae_config)
# Training with custom loss
loss_history = vae.train(
train_loader=mnist_loader,
epochs=100,
learning_rate=1e-3,
beta_schedule='constant' # or 'annealing'
)# Character-level text generation
rnn_config = {
'vocab_size': 128,
'hidden_size': 512,
'num_layers': 3,
'dropout': 0.2,
'temperature': 0.8
}
generator = RNNTextGenerator(**rnn_config)
generator.train_on_text('data/shakespeare.txt', epochs=50)
# Generate with different creativity levels
conservative_text = generator.generate("Hello", temperature=0.5)
creative_text = generator.generate("Hello", temperature=1.2)# Test model robustness
robustness_eval = AdversarialEvaluator(model)
# FGSM attack
fgsm_accuracy = robustness_eval.fgsm_attack(
test_loader=test_data,
epsilon=0.3
)
# PGD attack
pgd_accuracy = robustness_eval.pgd_attack(
test_loader=test_data,
epsilon=0.3,
num_steps=20,
step_size=0.01
)
# Adversarial training for defense
robust_model = robustness_eval.adversarial_training(
train_loader=train_data,
attack_method='pgd',
epochs=50
)Performance metrics will vary based on your specific dataset, model configuration, and hardware setup. Each algorithm is designed to achieve competitive results when properly tuned for your use case.
# Visualize VAE latent space
vae.plot_latent_space(test_data, save_path='latent_space.png')
# Interpolation between samples
interpolation = vae.interpolate(sample1, sample2, steps=10)
vae.save_interpolation_gif(interpolation, 'interpolation.gif')# Visualize optimization functions
optimizer_viz = OptimizationVisualizer()
# 2D landscape
optimizer_viz.plot_2d_function('rosenbrock', range_x=(-2, 2), range_y=(-1, 3))
# Optimization path
path = optimizer_viz.optimize_with_history('rastrigin', method='adam')
optimizer_viz.plot_optimization_path(path)# Custom VAE training with logging
trainer = VAETrainer(model=vae, config=training_config)
trainer.add_callback('tensorboard', log_dir='logs/')
trainer.add_callback('model_checkpoint', save_dir='checkpoints/')
history = trainer.train(
train_loader=train_data,
val_loader=val_data,
epochs=100
)# Automated hyperparameter search
from src.utils import HyperparameterOptimizer
optimizer = HyperparameterOptimizer(
model_class=VAE,
search_space={
'latent_dim': [16, 32, 64],
'learning_rate': [1e-4, 1e-3, 1e-2],
'beta': [0.5, 1.0, 2.0]
}
)
best_params = optimizer.search(train_data, val_data, trials=50)Implementation based on seminal papers:
- VAE: Kingma & Welling (2014)
- Adversarial Examples: Goodfellow et al. (2015)
- LSTM: Hochreiter & Schmidhuber (1997)