Skip to content
Merged
4 changes: 3 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -370,4 +370,6 @@ distances between Gaussian distributions](https://hal.science/hal-03197398v2/fil

[68] Chowdhury, S., Miller, D., & Needham, T. (2021). [Quantized gromov-wasserstein](https://link.springer.com/chapter/10.1007/978-3-030-86523-8_49). ECML PKDD 2021. Springer International Publishing.

[69] Delon, J., & Desolneux, A. (2020). [A Wasserstein-type distance in the space of Gaussian mixture models](https://epubs.siam.org/doi/abs/10.1137/19M1301047). SIAM Journal on Imaging Sciences, 13(2), 936-970.
[69] Delon, J., & Desolneux, A. (2020). [A Wasserstein-type distance in the space of Gaussian mixture models](https://epubs.siam.org/doi/abs/10.1137/19M1301047). SIAM Journal on Imaging Sciences, 13(2), 936-970.

[70] Séjourné, T., Vialard, F. X., & Peyré, G. (2022). [Faster Unbalanced Optimal Transport: Translation Invariant Sinkhorn and 1-D Frank-Wolfe](https://proceedings.mlr.press/v151/sejourne22a.html). In International Conference on Artificial Intelligence and Statistics (pp. 4995-5021). PMLR.
101 changes: 101 additions & 0 deletions examples/unbalanced-partial/plot_conv_sinkhorn_ti.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,101 @@
# -*- coding: utf-8 -*-
"""
===============================================================
Translation Invariant Sinkhorn for Unbalanced Optimal Transport
===============================================================

This examples illustrates the better convergence of the translation
invariance Sinkhorn algorithm proposed in [70] compared to the classical
Sinkhorn algorithm.

[70] Séjourné, T., Vialard, F. X., & Peyré, G. (2022).
Faster unbalanced optimal transport: Translation invariant sinkhorn and 1-d frank-wolfe.
In International Conference on Artificial Intelligence and Statistics (pp. 4995-5021). PMLR.

"""

# Author: Clément Bonet <clement.bonet@ensae.fr>
# License: MIT License

import numpy as np
import matplotlib.pylab as pl
import ot

##############################################################################
# Setting parameters
# -------------

# %% parameters

n_iter = 50 # nb iters
n = 40 # nb samples

num_iter_max = 100
n_noise = 10

reg = 0.005
reg_m_kl = 0.05

mu_s = np.array([-1, -1])
cov_s = np.array([[1, 0], [0, 1]])

mu_t = np.array([4, 4])
cov_t = np.array([[1, -.8], [-.8, 1]])


##############################################################################
# Compute entropic kl-regularized UOT with Sinkhorn and Translation Invariant Sinkhorn
# -----------

err_sinkhorn_uot = np.empty((n_iter, num_iter_max))
err_sinkhorn_uot_ti = np.empty((n_iter, num_iter_max))


for seed in range(n_iter):
np.random.seed(seed)
xs = ot.datasets.make_2D_samples_gauss(n, mu_s, cov_s)
xt = ot.datasets.make_2D_samples_gauss(n, mu_t, cov_t)

xs = np.concatenate((xs, ((np.random.rand(n_noise, 2) - 4))), axis=0)
xt = np.concatenate((xt, ((np.random.rand(n_noise, 2) + 6))), axis=0)

n = n + n_noise

a, b = np.ones((n,)) / n, np.ones((n,)) / n # uniform distribution on samples

# loss matrix
M = ot.dist(xs, xt)
M /= M.max()

entropic_kl_uot, log_uot = ot.unbalanced.sinkhorn_unbalanced(a, b, M, reg, reg_m_kl, reg_type="kl", log=True, numItermax=num_iter_max, stopThr=0)
entropic_kl_uot_ti, log_uot_ti = ot.unbalanced.sinkhorn_unbalanced(a, b, M, reg, reg_m_kl, reg_type="kl",
method="sinkhorn_translation_invariant", log=True,
numItermax=num_iter_max, stopThr=0)

err_sinkhorn_uot[seed] = log_uot["err"]
err_sinkhorn_uot_ti[seed] = log_uot_ti["err"]

##############################################################################
# Plot the results
# ----------------

mean_sinkh = np.mean(err_sinkhorn_uot, axis=0)
std_sinkh = np.std(err_sinkhorn_uot, axis=0)

mean_sinkh_ti = np.mean(err_sinkhorn_uot_ti, axis=0)
std_sinkh_ti = np.std(err_sinkhorn_uot_ti, axis=0)

absc = list(range(num_iter_max))

pl.plot(absc, mean_sinkh, label="Sinkhorn")
pl.fill_between(absc, mean_sinkh - 2 * std_sinkh, mean_sinkh + 2 * std_sinkh, alpha=0.5)

pl.plot(absc, mean_sinkh_ti, label="Translation Invariant Sinkhorn")
pl.fill_between(absc, mean_sinkh_ti - 2 * std_sinkh_ti, mean_sinkh_ti + 2 * std_sinkh_ti, alpha=0.5)

pl.yscale("log")
pl.legend()
pl.xlabel("Number of Iterations")
pl.ylabel(r"$\|u-v\|_\infty$")
pl.grid(True)
pl.show()
4 changes: 3 additions & 1 deletion ot/unbalanced/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
from ._sinkhorn import (sinkhorn_knopp_unbalanced,
sinkhorn_unbalanced,
sinkhorn_stabilized_unbalanced,
sinkhorn_unbalanced_translation_invariant,
sinkhorn_unbalanced2,
barycenter_unbalanced_sinkhorn,
barycenter_unbalanced_stabilized,
Expand All @@ -22,6 +23,7 @@
from ._lbfgs import (lbfgsb_unbalanced, lbfgsb_unbalanced2)

__all__ = ['sinkhorn_knopp_unbalanced', 'sinkhorn_unbalanced', 'sinkhorn_stabilized_unbalanced',
'sinkhorn_unbalanced2', 'barycenter_unbalanced_sinkhorn', 'barycenter_unbalanced_stabilized',
'sinkhorn_unbalanced_translation_invariant' 'sinkhorn_unbalanced2',
'barycenter_unbalanced_sinkhorn', 'barycenter_unbalanced_stabilized',
'barycenter_unbalanced', 'mm_unbalanced', 'mm_unbalanced2', '_get_loss_unbalanced',
'lbfgsb_unbalanced', 'lbfgsb_unbalanced2']
Loading